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The exact resolution function of the transfer vector for the HERMÈS

reflectometer at the Laboratoire Léon Brillouin is calculated as an example of

a neutron time-of-flight spectrometer with a double-disk chopper. The

calculation accounts for the wavelength distribution of the incident beam, the

tilt of the chopper axis, collimation and gravity, without an assumption of

Gaussian distributions or the independence of these different contributions. A

numerical implementation is provided. It is shown that data fitting using this

exact resolution function allows much better results to be reached than with the

usual approximation by a Gaussian profile.

1. Introduction

It is quite common for physical measurements to attempt to

reach the limit of a given technique. In many cases, this

amounts to measuring a quantity with an accuracy better than

the resolution of the apparatus. Stated like that, it seems

impossible. For instance, how is one to discriminate the posi-

tion of two peaks which are closer to each other than their

width? It is possible to do this if we expect a given shape for

each peak, by convoluting the expectation with the resolution

function of the apparatus and comparing the result with the

measurement (this is commonly called ‘data fitting’). As

another example, neutron specular reflectivity allows us to get

structural information on thin layers at an interface, i.e. layer

thicknesses and densities [for an introduction to reflectivity

see, for instance, Cousin & Chennevière (2018)]. The latter are

determined relative to the scattering length density difference

�� between the two infinite media separated by the interface,

and consequently from the value of the critical transfer vector

qc below which total reflection occurs; e.g. for the air/silicon

interface qc = 0.0102 Å�1 yields �� = q2
c=16� = 2.07 �

1010 cm�2, which is the correct result. A shift of 3% for qc =

1.03 � 0.0102 Å�1 gives �� = 2.20 � 1010 cm�2, which is not

acceptable for many users of reflectometers. But 3% is the

order of magnitude of the resolution. This barrier can be

bypassed if we know that the reflectivity curve should obey a

given function. To reach these limits, the calculation of the

resolution function has to be as accurate as possible. In

particular, the approximation that all of the random variables

that contribute to the resolution have a Gaussian probability

density is probably not satisfactory (Nelson, 2013), especially

in cases where the resolution is relaxed to gain flux. This

approximation, which was legitimate when the means of

calculation were insufficient, is no longer justified.
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Neutron reflectivity measurements take a ‘picture’ of a

sample in reciprocal space for which the conjugate variable of

distance is the transfer vector q, whose magnitude is propor-

tional to the ratio of the incident angle � to the wavelength �.

Assuming that � and � are two independent variables, the

relative resolution is such that ð�q=qÞ
2
’ ð��=�Þ

2
þ ð��=�Þ

2,

where � are the standard deviations. On the other hand, if we

do not account for the transfer function of the sample, the

signal is proportional to the incident neutron flux, i.e. to the

product ����. Thus for a given flux, the minimum in �q/q is

obtained for ��=� = ��=�. Time-of-flight (t.o.f.) techniques do

the work at constant � (thus constant ��=�) as a function of �.

If we require a constant flux, since ��=� is constant, ��=�
should also be constant. This is achieved with double-disk

choppers (van Well, 1992) and this argument is the major

reason why double-disk choppers are widely used. The

counterpart is a broad-resolution �� at long wavelength,

precisely in the region where good accuracy is often needed

(the edge of the total reflection plateau), hence the interest in

making an exact calculation of the resolution function.

In this paper we present the calculation of the overall and

exact resolution function for the HERMÈS reflectometer at

the Laboratoire Léon Brillouin, the design of which is widely

adopted at several neutron sources. In spite of its current

continuous neutron source (the Orphée reactor), this spec-

trometer is based on the t.o.f. principle which will become

generalized with the increase in the number of pulsed neutron

sources, and it is equipped with a double-disk chopper that is

now standard. The presented formalism to obtain the exact

resolution function thus has a broad scope and could be easily

transferred to other reflectometers or to other techniques such

as small-angle scattering or diffraction.

For the most part, the different contributions to the final

resolution have already been mentioned separately in the

literature: the wavelength distribution of the incident beam,

the tilt of the chopper axis, the beam size, collimation and

gravity (van Well & Fredrikze, 2005; Nelson, 2013; Gutfreund

et al., 2018). However, considering all these different terms for

the exact and ‘all-in-one’ resolution function requires special

attention, because the different contributions are neither

independent nor Gaussian, so they cannot simply be added

and are quite intertwined. This is precisely the motivation of

our paper. Here, the different random variables that contri-

bute to the final resolution are presented in a uniform and

comprehensive manner. The most important factor is that

their variances are not just added by virtue of the central-limit

theorem, as is usually done, but their exact distribution func-

tions are considered and appropriately convoluted. We write

analytically the whole resolution function that accounts for all

terms without any assumption of Gaussian distributions or

statistical independence. In addition, a Python module that

implements these calculations numerically is provided (https://

bitbucket.org/LLBhermes/pytof/). Finally, we show that data

fitting using this exact resolution function allows us to reach

much more accurate results than when using the usual

approximation by a Gaussian profile.

2. Brief description of the reflectometer

In Fig. 1, a schematic diagram of the HERMÈS reflectometer

is shown. Neutron pulses are produced by a three-disk

chopper from Airbus. The three disks (numbered 1, 2 and 3

with respect to the neutron direction) have the same radius r =

300 mm and the same fixed angular aperture of 165� allowing

neutrons to pass. In standard configurations these disks rotate

in the same direction at a pulsation ! around the same axis.

Disks 2 and 3 are in fixed positions 2 m from each other,

whereas disk 1 can be placed at three different distances from

disk 2 (0.1, 0.35 and 1 m). Essentially, disks 1 and 2 control the

wavelength resolution, whereas disk 3 in the standard

configuration is mainly devoted to avoiding time overlap of

the slowest neutrons of a given pulse with the fastest of the

next one.

The collimator is basically made of two horizontal slits of

half-widths r1 and r2 (numbered 1 and 2 with respect to the

neutron direction) located between disks 2 and 3, at the same

height and spaced apart by dc = 1.8 m. The width of the slits

can be tuned and chosen so that the angular resolution

matches the wavelength resolution resulting from the disk

chopper parameters: ��=� ’ ��=�. In the following, we will

consider three different typical configurations fulfilling this

condition and corresponding to high (HR), medium (MR) and

low resolution (LR), respectively (see Table 1).
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Figure 1
A schematic diagram of the HERMÈS reflectometer.

Table 1
Typical configurations corresponding to high, medium and low resolution.

x1, x2, x3, xs and xd are the positions of disks 1, 2 and 3 and the sample and
detector, respectively. r1 and r2 are the half-widths of the first and second slits
of the collimator at a fixed distance dc = 1800 mm apart. All lengths are in
millimetres. Except where specified, the number of t.o.f. channels is equal to
256, covering 360� of chopper revolution. Also, the phases for disk 1 closure
(’c,1) and disk 2 and disk 3 opening (’o,2, ’o,3) are equal.

HR MR LR

xd � xs 2020
xd � x3 2375
x3 � x2 2000
x2 � x1 100 350 1000
r1 0.5 1 2.3
r2 0.5 0.5 0.5



Specular reflection at the desired angle �0 is obtained by

rotation of the sample. In cases where a non-horizontal beam

is needed (e.g. for the study of horizontal liquid surfaces), two

plane mirrors are placed in the collimator to divert the beam.

These mirrors have no impact on the resolution and will be

ignored in the following. Specular reflection is measured in a

vertical plane at an angle of 2�0 with a single detector whose

area is wide enough to cross the trajectory of all reflected

neutrons.

3. Wavelength resolution

The wavelength resolution essentially results from the incident

beam distribution and the transfer function of the chopper.

The latter is mainly controlled by the phases of the first two

disks, but generally the third should also be accounted for at

long wavelengths. In this section we examine these different

points and present a way of calibrating the phases in question.

3.1. Basics of a double-disk chopper

We first consider a chopper made only of the first two disks.

Let us denote xk the positions (as in Table 1), ’o,k = !to,k the

phase for disk opening and ’c,k = !tc,k the phase for disk

closure; see Table 2 for definitions of the principal variables

used herein. By convention, we denote the actual phase as

!t � ’, so that ’ > 0 indicates a delay. The measurement

consists of recording the number of neutron arrivals at the

detector position xd and time td over a timebase that is peri-

odically restarted (triggered) at each revolution of the

chopper. The accumulated record, obtained at time td, is

referred to as a ‘time-of-flight channel’ (or t.o.f. channel) in

the following. Fig. 2 shows the corresponding t.o.f. diagram

using !t as abscissa. From de Broglie’s equation, in this

diagram the kinematic curve of a neutron of wavelength � and

speed v is a straight line with the reciprocal slope

!

v
¼
!

hm

�; ð1Þ

where hm is the ratio of Planck’s constant to the mass of a

neutron: hm ’ 3956 Å m s�1.

Simple geometric considerations show that neutrons with a

time of arrival td have a speed between v1 and v2, symbolized

by the two solid red lines in Fig. 2, such that

1

v1

¼ max 0;
td � tc;1

L1

� �
and

1

v2

¼ max 0;
td � to;2

L2

� �
; ð2Þ

with L1 = xd� x1 and L2 = xd� x2. The wavelengths �1 = hm/v1

and �2 = hm/v2 correspond to these boundaries. Let us define
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Figure 2
A double chopper: flight distance plotted versus phase !t. Blue indicates
the closed sectors of the disks. Neutrons that reach the detector at phase
!td have kinematics that lie between the two solid red lines, whose slopes
are given by equation (2). Here !� =�15�, which is an exaggerated value
chosen so that the drawing is clear.

Table 2
Table of symbols.

hm Ratio of Planck’s constant to the mass of a neutron
g Gravitational acceleration

v Neutron speed
� Wavelength
! Chopper pulsation
t Time
’ = !t
� Tilt angle of the disk 1–disk 2 axis
	 Tilt angle of the disk 1–disk 3 axis
tc,k, to,k Closure and opening times for disk k 2 {1, 2, 3}
td Detection time (center of t.o.f. channel)
xk Position of disk k 2 {1, 2, 3}
xd, xc, xs Positions of detector, middle of collimator and sample
xin Position of collimator entry

t0 = (to,2 + tc,1)/2
l = (x2 � x1)/2
� = (to,2 � tc,1)/2

Li, Lj, Lk = xd � xi etc.
L = (L1 + L2)/2

�1, �2 Wavelength boundaries of a given t.o.f. channel
�0 = (�1 + �2)/2, nominal wavelength

r1, r2 Half-widths of the first and second slits of the collimator
dc Distance between the two slits of the collimator

c = (r1 � r2)/dc, beam divergence due to collimation
r Radius of disks

�p Pulse half-width
�d Half-width of t.o.f. channel
�cr,c, �cr,o Crossing times for beam closure and opening

�0 Nominal specular reflection angle (tilt of the sample)
� Specular reflection angle

 Deviation of neutrons due to beam divergence
� Deviation due to gravity at the sample position

D(�) Wavelength transmission probability density
HB(�) Wavelength distribution of incident beam
H(�) Wavelength distribution on the sample
P(
) Angular distribution due to beam divergence
J(�) Angular distribution on the sample due to gravity
G(�) Distribution of incidence angle
q = 4� sin(�)/�, transfer vector magnitude
R(q) Resolution function for transfer vector

m(q) Theoretical reflectivity curve (model)
Mth(q) Theoretical measurement of m(q) accounting for R(q)
M(q) Actual measurement of m



L ¼ ðL1 þ L2Þ=2;

t0 ¼ ðto;2 þ tc;1Þ=2;

l ¼ ðx2 � x1Þ=2;

� ¼ ðto;2 � tc;1Þ=2:

ð3Þ

Note that � can be either positive or negative (� < 0 in Fig. 2).

Then the second terms in brackets in equation (2) can be

rewritten as

1

v1

¼
ðtd � t0Þ þ �

L1

and
1

v2

¼
ðtd � t0Þ � �

L2

: ð4Þ

The half-range of the transmitted wavelength �� and the

median wavelength �0 are

�� ¼ ð�2 � �1Þ=2 and �0 ¼ ð�2 þ �1Þ=2: ð5Þ

In the following, �0 will be referred to as the nominal wave-

length of the t.o.f. channel at time td. One gets

�� ¼ hm

lðtd � t0Þ � L�

L1L2

and �0 ¼ hm

Lðtd � t0Þ � l�

L1L2

: ð6Þ

In the case � = 0, one obtains

��=�0 ¼ l=L; ð7Þ

so that the relative resolution of the chopper is constant

whatever the t.o.f. channel. This is the main reason for using a

double-disk chopper as it allows us to optimize the resolution

with respect to the neutron flux (van Well, 1992). From Table 1,

the three standard configurations correspond to ��/�0 = 1, 4

and 10%, respectively. For comparison with other terms that

play a role in the resolution, it is valuable to introduce a ‘pulse

half-width’ !�p = ��!L/hm. For ! = 104 � s�1, � = 0, L ’ 4 m

and 2 < � < 20 Å, one has 0.2 < !�p < 2� at high resolution and

2 < !�p < 20� at low resolution.

3.2. Wavelength transmission function

For subsequent calculations of the exact resolution func-

tion, it is necessary to consider the probability density func-

tions rather than the half-widths. The previous section can be

formalized as follows. Let us consider the probability of a

neutron of wavelength � = hm/v reaching the detector at time

td. The probability that this neutron passed through the first

disk before it closed is the unit step function f1(�) = [td�L1/v <

tc,1] = [(td � tc,1)/L1 < 1/v], where [ . . . ] = 1 if the condition

inside the brackets is true and 0 if not. The probability of

passing the second disk after it opens is the unit step function

f2(�) = [to,2 < td � L2/v] = [1/v < (td � to,2)/L2]. This can be

rewritten as

f1ð�Þ ¼ ½�1 <��;

f2ð�Þ ¼ ½�<�2�:
ð8Þ

The probability density D0(�) that a neutron of wavelength �
reaches the detector at time td is the probability of fulfilling

these two independent conditions. Ignoring a normalization

factor one gets

D0ð�Þ ¼ f1ð�Þ f2ð�Þ ¼ ½�1 <�<�2�: ð9Þ

3.3. Three-disk chopper

The general case of a three-disk chopper is a little more

complicated because the opening and closing in equation (9)

that chops the neutron beam can come from any pair of disks.

For instance, in Fig. 3, the speed v1 of the fastest neutrons

reaching the detector at time td is limited by the closure either

of disk 1 (at a short time td) or of disk 3 (at a long time td). This

can be formalized as follows. For each disk k let us denote

v�1
c;k ¼ max 0;

td � tc;k

Lk

� �
and v�1

o;k ¼ max 0;
td � to;k

Lk

� �
:

ð10Þ

Let us define the indices i, j such that

v�1
c;i ¼ max

k2f1;2;3g
v�1

c;k

� �
and v�1

o; j ¼ min
k2f1;2;3g

v�1
o;k

� �
: ð11Þ

All expressions of the previous section can then be general-

ized by replacing (1, 2) by (i, j). Note that in a standard

configuration tc,1 ’ to,2 ’ to,3 , so that the third disk comes into

play only for long detection times. In this case, for most t.o.f.

channels (i, j) = (1, 2) this corresponds to the double-disk

regime. However this is not general and (i, j), which depends

on the relative phases of the three disks, also depends on the

t.o.f. channel.

3.4. Crossing times and width of t.o.f. channel

The previous section implicitly considers a neutron beam of

zero width. Because of its finite size, the beam opening (and

closure) due to the passage of a disk is not instantaneous and

not correctly described by a unit step function (Nelson, 2013).

If the collimation is done with rectangular slits parallel to the

edge of the disk windows, the transmitted beam area varies

linearly with time, from 0 to its maximum value at a time 2�cr =

2ra/!r, with ra the half-width of the beam and r the radius of
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Figure 3
A three-disk chopper: in contrast to Fig. 2, the third disk comes into play
for long times of flight. The dashed black line, with a slope (x3 � x1)/
(’c,3 � ’c,1) = (xd � x1)/(!tc � ’c,1), delimits two regimes for the speed v1

of the fastest neutrons of one given t.o.f. channel: v1 is limited either by
the closure of disk 1 (green) or by that of disk 3 (red). The same occurs for
slow neutrons of speed v2 (case not shown).



the chopper disks. Actually, ra depends on the beam diver-

gence due to collimation (see Section 4.1) and thus on the

position of the disk with respect to the collimator. Let us

denote as r1 and r2 the half-widths of the two slits of the

collimator, dc their separation distance, and 
c = (r1 � r2)/dc.

Then the half-width of the beam at a position x is

raðxÞ ¼ r1 þ 
cðxin � xÞ; ð12Þ

where xin is the position of the collimator entry. For x ’ xin,

ra(x) ’ r1 (Nelson, 2013), but even if this condition is fulfilled

for one disk of the pair (i, j), it may not be for the other

because their positions are different. Thus, except in a case of

particularly small beam divergence, the beam size is different

for the two disks. Also, typical values for r1, r2 (Table 1) and r =

300 mm give !�cr between 0.1 and 0.6�, which is not negligible

compared with the pulse half-width !�p at short wavelength

�0. The general expression for the beam size is then preferred.

The corresponding crossing times for beam closure (�cr,c) and

opening (�cr,o) are

�cr;c ¼ raðxiÞ=!r and �cr;o ¼ raðxjÞ=!r: ð13Þ

The unit step functions f1 and f2 for the probabilities of passing

the first and second disks in equation (9) have to be replaced

by two linear piecewise functions g1 and g2 corresponding to

the linear variations of the corresponding beam areas between

0 and the maxima:

g1ð�Þ ¼

1 td < tc � �cr;c

1
2þ ðtc � tdÞ=2�cr;c tc � �cr;c � td � tc þ �cr;c

0 tc þ �cr;c < td

8><
>:

g2ð�Þ ¼

0 td < tc � �cr;o

1
2þ ðtd � toÞ=2�cr;o to � �cr;o � td � to þ �cr;o

1 to þ �cr;o < td

8><
>:

ð14Þ

with tc = tc;i þ Li=v and to = to;i þ Lj=v. As a function of

wavelength this can be rewritten in terms of convolution as

g1ð�Þ ¼ f1ð�Þ � �
hm�cr;c

Li

<�� �1 <
hm�cr;c

Li

� �
;

g2ð�Þ ¼ f2ð�Þ � �
hm�cr;o

Lj

<�� �2 <
hm�cr;o

Lj

� �
:

ð15Þ

The probability density for the transmission g1(�)g2(�) is a

piecewise function with up to five pieces [instead of a boxcar

function for D0(�)] which is not symmetrical (because �cr,c 6¼

�cr,o and Li 6¼ Lj) and not always linear (e.g. for small �2� �1).

Neutron counters record the number of neutron arrivals

within the time interval [td� �d, td + �d]. For instance, 256 t.o.f.

channels covering 360� of data acquisition give !�d ’ 0.7�,

which is not always negligible compared with the pulse half-

width !�p, especially at short �0, and is comparable to the

crossing times for beam closure and opening !�cr,o and !�cr,c.

In addition, note that, in order to gain increased counting

statistics, channel binning is often performed after data

acquisition. This operation amounts to use of a larger channel

width �d. Similar to the crossing time, the effect of the channel

width is not symmetrical for the disk i closure and disk j

opening, because Li 6¼ Lj. By taking into account the crossing

times and channel widths, one can finally write the transmis-

sion function D(�) as

Dð�Þ ¼ h1ð�Þh2ð�Þ; ð16Þ

with

h1ð�Þ ¼ g1ð�Þ � �
hm�d

Li

<�� �1 <
hm�d

Li

� �
; ð16aÞ

and

h2ð�Þ ¼ g2ð�Þ � �
hm�d

Lj

<�� �2 <
hm�d

Lj

� �
: ð16bÞ

This again results in a piecewise function that would be a little

tedious to write explicitly, because it consists of up to seven

pieces with different cases to consider depending on the order

of �p, �d, �cr,c and �cr,o. Numerically, equation (16) can be

computed as is (see Python module at https://bitbucket.org/

LLBhermes/pytof/).

In Fig. 4, the ratio of the standard deviation � of D(�) to its

mean value � is plotted for 256 t.o.f. channels covering 360� of

a chopper revolution for the three typical configurations of

Table 1. The curves show a plateau corresponding to the

‘double-disk’ chopper regime described by equation (7). At

large !�d (large �0), the decrease in resolution is due to the

third disk that comes into play, whereas at small !�d (small �0)

departure from the plateau is due to the crossing times and the

channel width.

The effect of channel binning on D(�) is plotted in Fig. 5 for

the high-resolution configuration of Table 1. Basically, D(�)

changes continuously from a nearly boxcar profile at large �0

to a ‘bell curve’ (but never Gaussian) at small �0. The t.o.f.

channel at which this change appears is shifted to high �0 as

the bin size increases.
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Figure 4
The ratio of the standard deviation � of D(�) to the mean value � versus
the phase of t.o.f. channels for the three typical configurations described
in Table 1. The dotted vertical lines mark the separation !tc of the two
regimes delimited by the dashed line in Fig. 3.



3.5. Phase calibration and tilt of the chopper axis

Time-resolved neutron counting is triggered at each revo-

lution by the chopper electronics. On this subject, the only

unknown parameter is the phase shift ’trig of this trigger with

respect to the physical origin of phases. This point is resolved

by measuring the transmission of a crystalline material (e.g. a

graphite crystal) that displays a characteristic attenuation at a

wavelength �* (Fermi et al., 1947). No matter what the value

of �*, the corresponding t.o.f. t* is constant and the related

phase is written as ’* = !t* + ’trig. Measuring ’* as a function

of ! and extrapolating to ! = 0 gives ’trig.

Taking the rotation of disk 1 as reference, the phase shifts of

disks 2 and 3 are chosen by the experimentalist and kept

constant by the electronics with a control feedback loop, which

ensures that no variation or drift occurs during measurements.

However, possible differences between phase setpoints and

their actual values have to be measured. Another point to

consider is that a vertical tilt or misalignment of the centers of

the three disks with the spectrometer axis affects the kine-

matic line of neutrons allowed to pass through the chopper in

the same manner as a phase difference, hence the need for

disk-phase calibration.

The phase of disk 2 affects the short-wavelength cut-off (�1)

and the chopper resolution in the first regime of Fig. 4,

whereas the phase of disk 3 affects the large-wavelength cutoff

(�2) in the second regime and the t.o.f. channel at which this

regime begins. Let us first consider the former. From Fig. 2,

one can see that the fastest neutrons passing through the

chopper are such that �min/hm = 1/vmax = �/l. Measuring the

transmission of the chopper, �min corresponds to the nominal

wavelength of the t.o.f. channel at which the spectrum departs

from the background. As the spectrum is quite abrupt in this

region (see Fig. 8 in Section 3.7) this is very accurate. Of

course, converting a channel to a wavelength assumes that we

neglect the resolution function (because at this point we do

not yet know it), but the consequence of this approximation is

negligible as �� is very small at short wavelengths. In Fig. 6,
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Figure 6
Minimum wavelength �min as a function of ’o,2 � ’c,1, measured for the
three different configurations of Table 1 at ! = 30 Hz. Extrapolation to
�min = 0 gives the angle � = (1 	 0.02)� that has to be added to the phase
of disk 2.

Figure 7
Value of the phase ’c,3 deduced from equation (17) and the measurement
of the phase !tc of the large-wavelength cut-off for a setpoint ’c,3 = 165�.
The difference with this setpoint gives 	 = �(3.5 	 0.3)�, which has to be
added to the phase of disk 3.

Figure 5
Wavelength distributions for the chopper transmission D(�) [equation
(16)] versus �/�0 (x axis) versus t.o.f. channel at a nominal wavelength �0

(y axis). Plots have been calculated for the high-resolution configuration
(HR) of Table 1 with 300 (no channel binning), 150 (data binning by a
factor 2) and 100 (data binning by a factor 3) t.o.f. channels from 30 to
300� of a chopper revolution.



the measured �min is plotted as a function of ’o,2 � ’c,1 = 2!�.
The linear behavior of the cut-off does not pass through the

origin: a constant � (here equal to 1� for the three configura-

tions) should be added to ’o,2 � ’c,1 in order to obtain the

correct value for �min. In practice, the phases ’o,2 and ’c,2 of

disk 2 in all equations will be replaced by ’o,2 + � and ’c,2 + �,
and the corresponding times to,2 and tc,2 changed accordingly.

Note that this method for measuring ’o,2 is equivalent to

measuring the intensity of a monochromatic beam as a func-

tion of the phase ’o,2 � ’c,1 (Gutfreund et al., 2018), but is

simpler to perform routinely because it does not require

setting up a monochromator on the beamline.

In the same way, the large-wavelength cut-off of the

chopper transmission allows us to determine the actual phase

of disk 3. The phase !tc of the cut-off (see Fig. 3) is

!tc � ’c;1

ðxd � x1Þ=ðx3 � x1Þ
¼ ’c;3: ð17Þ

From the measurement of !tc the actual value of ’c,3 can be

deduced (Fig. 7). Here, we found that a constant value 	 =

�3.5� has to be added to the phase of disk 3. In the general

case, the phases ’o,3 and ’c,3 of disk 3 in all equations will be

replaced by ’o,3 + 	 and ’c,3 + 	, and the corresponding times

to,3 and tc,3 changed accordingly.

3.6. Effect of gravity on tilt angles

Because of gravity, a neutron’s flight path is parabolic. The

deviation from a straight line and a horizontal trajectory

increases with the t.o.f., leading to actual values for the vertical

tilt angles � and 	 of the previous section that depend on

wavelength.

Let us assume that the detector and the collimator slits are

properly aligned with the neutron guide using a criterion of

maximum neutron flux measured by integrating over the

whole wavelength distribution. As neutrons of short wave-

length are in the majority (see Fig. 8 in the next section) and

neglecting their deviation due to gravity, the line joining the

two slits of the collimator is almost horizontal. The apex of the

parabolic trajectories of all neutrons is thus at the middle xc

between the two slits of the collimator. Let us denote vx = hm/�
and vz as the horizontal and vertical components of neutron

velocity, respectively. At the apex, vz = 0. At any other position

x, the deflection angle 
 is tan�1ðvz=vxÞ ’ vz/vx. The t.o.f. to

cover the distance |x � xc| is |x � xc|/vx, leading to vz = �g(x �

xc)/vx, with g the gravitational acceleration. Thus,


ðxÞ ¼
�gðx� xcÞ

v2
x

¼ �ðx� xcÞ
g

h2
m

�2; ð18Þ

with g=h2
m ’ 6.27 � 10�7 m�1 Å�2. Given two points (e.g. the

edges of the two chopper disks i and j) on the parabola, the

tangent at the middle is parallel to the chord. Thus, the tilt

angles � and 	 viewed by neutrons with parabolic trajectories

are

�ð�Þ ¼ �ð0Þ þ 

x1 þ x2

2

� 	
;

	ð�Þ ¼ 	ð0Þ þ 

x1 þ x3

2

� 	
:

ð19Þ

As these tilt angles have an effect on the boundaries �1 and �2

of each t.o.f. channel, gravity should affect the wavelength

resolution. However, this effect is very small. For instance, in

the double-disk regime (i, j) = (1, 2), only � is relevant and

increases �2 by hm
[(x1 + x2)/2]/!L2. For reflectometers a few

metres long, 
[(x1 + x2)/2] is around 0.01� and �2 is shifted by

around 10�3 Å, which is clearly negligible.

3.7. Incident beam and detector efficiency

Thermal neutrons have a Maxwell–Boltzmann distribution

of velocity that is altered by neutron guides. This distribution

can not be measured directly, only its product HB(�) with the

detector efficiency which decays exponentially with wave-

length. For a given t.o.f. channel, chopping a neutron beam

amounts to applying the transmission D(�) of equation (16) to

HB(�) (Nelson, 2013) (see Fig. 8). The probability density of

wavelengths for neutrons recorded in this channel is

Hð�Þ ¼ HBð�ÞDð�Þ: ð20Þ

HB(�) can be measured using a single-disk chopper with a

small �� (i.e. much smaller than the three-disk chopper)

independent of the t.o.f. channel. For further calculations,

HB(�) can then be properly parametrized using an ad hoc

function.

Note that measuring HB(�) (which includes the detector

efficiency) and using equation (20) gives us a way of

accounting for the wavelength dependence of the detection

time mentioned in the literature (Gutfreund et al., 2018).

In Fig. 9, the wavelength distribution H is plotted for the

different t.o.f. channels and for the three configurations of
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Figure 8
(Blue line) A plot of the effective wavelength distribution HB(�) of the
incident beam provided by the Orphée reactor on the neutron guide
G6-2. (Red line) The transmission probability density D(�) for a t.o.f.
channel at 180� computed for the low-resolution configuration of Table 1.
(Orange line) The wavelength distribution H(�) (not normalized).



Table 1. The strong asymmetry of H(�) results in a mean

wavelength � =
R
�Hð�Þ d� significantly different from �0. In

order to render this difference more clearly, we have plotted in

Fig. 10 the ratio �=�0 as a function of the nominal wavelength

�0 for the three different chopper configurations of Table 1.

The wider the resolution, the more � deviates from �0.

4. Angular resolution

In this section, we focus on beam collimation and gravity,

which both contribute to the final distribution of neutron

incidence angles on a sample.

4.1. Beam divergence

Let us consider the divergence in the vertical plane of a

neutron beam collimated with two horizontal slits of half-

widths r1 and r2, respectively, separated by a distance dc. The

distribution function P(
) of the angle of neutron trajectory

results from the convolution of two boxcar functions centered

on 0 and half-widths r1/dc and r2/dc, respectively:

Pð
Þ ¼ ½�r1=dc <
< r1=dc� � ½�r2=dc <
< r2=dc�: ð21Þ

This results in a symmetrical linear piecewise function. As

convolution is commutative, the two boxcar functions are fully

interchangeable, as also is the order of the values for r1 and r2

as far as only P(
) is concerned. However, for reasons related

to the beam size [e.g. it is desired that the ‘footprint’ 2r2 sin(�)

be smaller than the sample size, and given that r2 restrains the

accuracy of the alignment of the sample], r1 > r2 is preferred

and r2 is kept constant. In Fig. 11 typical curves for P(
) are

plotted for the standard collimations of Table 1.

The angular distribution P(
) so calculated implicitly

assumes that the footprint of the beam on the sample (the part

of the sample illuminated by the beam) is smaller than the size

rs of the sample in the x direction. In the case of a small sample

and a very small tilt angle �0 of the sample with respect to the

beam, it may be that this condition is not fulfilled: 2r2 >

rs sin(�0). Then, P(
) has to be calculated only for the part of
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Figure 10
The ratios of the mean wavelength � of the distribution H(�) to the
nominal wavelength �0 versus �0 for the three configurations of Table 1.

Figure 9
Wavelength distributions H(�) [equation (20)] versus �/�0 (x axis) versus
t.o.f. channel at a nominal wavelength �0 (y axis) for the three
configurations of Table 1.

Figure 11
The typical angular distribution P(
) due to beam divergence for the
three standard collimations of Table 1.



the beam that reaches the sample. Equation (21) can account

for this ‘over-illumination’ by replacing r2 by rs sin(�0)/2 and dc

by the distance between the first slit and the sample.

4.2. Deviation due to gravity

As mentioned in Section 3.6, gravity causes deviation of a

neutron’s trajectory. The angle of incidence of neutrons

reaching the sample thus depends on their wavelength, which

has to be accounted for if specular reflectivity is measured in

the vertical plane (Bodnarchuk et al., 2011).

If xs is the position of the sample, from equation (18) the

deviation angle (which is always negative) on the sample is

� ¼
�gðxs � xcÞ

v2
x

¼ �ðc�Þ2 with c ¼
½gðxs � xcÞ�

1=2

hm

: ð22Þ

The distribution J(�) of the deviation is related to the distri-

bution of wavelengths H(�) via the general relation J(�) =

H(�) jd�/d�j, with � = (��)1/2/c [the inverse relation of

equation (22)]. One obtains

Jð�Þ ¼
1

2cð��Þ1=2
H ð��Þ1=2=c

 �

: ð23Þ

Basically, J(�) has a shape comparable to H(�). Let us denote

as [�1, �2] the support interval of J(�) and �� = (�2 � �1)/2.

From equation (22), one obtains �� = 2(c�0)2 (��/�0). The

quantity c is typically of the order of 8 � 10�4 Å�1 for xs� xc =

1 m, and thus in a standard configuration �� is small

compared with the beam divergence [support of P(
)].

However, if the relative angular resolution is very small

compared with the wavelength resolution H(�), for instance in

the case of t.o.f. channel binning to increase statistics (Cubitt et

al., 2015) or in the case of narrow collimation due to a small

sample size etc., then gravity should affect the width of the

angular resolution. In any case, the main effect of gravity is

due to the mean value � =
R
�Jð�Þ d� which is nonzero and

depends on the t.o.f. channel (i.e. on �0). In Fig. 12, the mean

deviation � is plotted as a function of �0.

Note that in the case of over-illumination of the sample (as

discussed at the end of Section 4.1), the middle of the colli-

mator has to be understood as being in between the first slit

and the sample.

4.3. Distribution of incidence angle

Let us denote as �0 the nominal angle (i.e. the angle

calculated from the inclination of the sample) of the neutron

beam with respect to the interface under study. This angle is

negative if neutrons come from below the interface and

positive if they come from above it (this sign is imposed by

gravity). The actual incidence angle � of neutrons on the

sample is

� ¼ �0 þ 
� �: ð24Þ

The distribution for � is thus given by

Gð�Þ ¼
R

Pð� � �0 þ �Þ Jð�Þ d�: ð25Þ
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Figure 12
The mean deviation � of neutrons due to gravity for xs � xc = 1 m versus
�0 for the three configurations of Table 1.

Figure 13
The angular resolution G(�) versus �/�0 (x axis, where �0 = 1� is the
nominal angle) versus t.o.f. channel at a nominal wavelength �0 (y axis).
Plots have been calculated for the three configurations of Table 1.



As J(�) is much narrower than P(
), its shape affects the

shape of G(�) only slightly but mainly induces an increase in

the mean value � compared with the nominal value �0. Note

that as � is negative, and due to the sign in equation (24),

gravity increases j�j for �0 > 0 but decreases j�j for �0 < 0. In

Fig. 13, the angular resolution function G(�) is plotted for �0 =

1� for the different t.o.f. channels and the three typical

configurations of the reflectometer.

Note that G(�) is plotted here for didactic reasons but is not

needed for the calculation of the overall resolution. Only its

elementary components P and J are used in the next section.

5. Resolution of transfer vector

The physical parameter related to structural information on

the measured samples is the magnitude of the transfer vector q

(the conjugate variable of distance) which is defined as

q ¼ 4� sinð�Þ=�: ð26Þ

However, the only directly adjustable parameters of the

spectrometer are � and �, both being distributed around �0

and �0. For a given t.o.f. channel, the resolution function R(q)

of the transfer vector should thus be a generalized convolution

of the probability densities H(�) (Fig. 9) and G(�) (Fig. 13)

whose corresponding random variables are combined

following equation (26). However due to gravity, � and � are

not strictly independent and convoluting their densities

directly is not correct, even if it is a good approximation in

standard configurations [because J(�) is narrow compared

with P(
) in most cases]. Moreover, this approximation does

not save computation time, so we prefer an exact treatment

that will remain valid even when the width of J becomes

significant (see Section 4.2).

For the sake of simplicity, let us first deal with the ‘small-

angle approximation’ sin(�)’ �. Then, using equation (24) the

transfer vector magnitude is rewritten as

q ¼
4��

�
¼ 4�

�0 þ 
� �

�
; ð27Þ

where � and 
 are random variables with densities H(�) and

P(
), respectively, while � =�(c�)2. Let us denote as M(q) the

measurement of the physical quantity m(q). Quite generally,

for one t.o.f. channel at q0 = 4��0/�0 one can write

Mðq0Þ ¼

Z
d�Hð�Þ

Z
d
Pð
Þ m 4�

�0 þ 
� �

�

� 

: ð28Þ

By using 
 = (�q/4�) � �0 � (c�)2 and d
 = (�/4�)dq, one can

eliminate J(�) and obtain

Mðq0Þ ¼

Z
d�Hð�Þ

Z
dq

�

4�
P
�q

4�
� �0 � ðc�Þ

2

� �
mðqÞ

¼

Z
dq mðqÞ

Z
d�Hð�Þ

�

4�
P
�q

4�
� �0 � ðc�Þ

2

� �
: ð29Þ

By definition, the last integral is the resolution function of the

transfer vector magnitude q:

RðqÞ ¼

Z
d�Hð�Þ

�

4�
P
�q

4�
� �0 � ðc�Þ

2

� �
: ð30Þ

The same procedure can be used for the exact expression q =

4� sinð�0 þ 
� �Þ=�, leading to 
 = sin�1
ð�q=4�Þ � �0 � ðc�Þ

2

and d
 = �dq/[(4�)2
� (�q)2]1/2. One obtains

RðqÞ ¼

Z
d�

Hð�Þ�P sin�1
ð�q=4�Þ � �0 � ðc�Þ

2

 �
4� 1� ð�q=4�Þ2

 �1=2

: ð31Þ

Equation (31) can be numerically calculated as is (see Python

module at https://bitbucket.org/LLBhermes/pytof/) from

equations (16), (20) and (21). In Fig. 14, the whole resolution

R(q) is plotted for the three typical configurations as a func-

tion of t.o.f. channel for �0 = 1�. Firstly, notice the shift in the

mean transfer vector value q =
R

qRðqÞ dq compared with q0.

This shift results from the wavelength distribution of the

incident beam (Fig. 10) and from gravity (Fig. 12). Both effects

contribute to the same result for �0 > 0 but they oppose each

other if �0 < 0. To account for this effect properly, the simplest

and most accurate way is to compute the exact resolution
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Figure 14
The total resolution R(q) of the transfer vector magnitude q versus q/q0 (x
axis, where q0 = 4� sin(�0)/�0 and �0 = 1� is the nominal angle) versus t.o.f.
channel at a nominal wavelength �0 (y axis). Plots have been calculated
for the three configurations of Table 1.



function. Secondly, note that the profile of the exact resolution

function differs from its Gaussian approximation (see Fig. 15).

In any case, the exact resolution function has a compact

support (i.e. R is nonzero inside a closed and bounded set of q

values), unlike a Gaussian curve which should be cut

numerically beyond an arbitrary multiple of the standard

deviation. For the configuration allowing a wider resolution,

the difference between the exact resolution and the Gaussian

approximation is much more important and even the modal

values differ. All these differences cannot reasonably be taken

into account when summarizing the resolution with mean and

standard deviation values.

6. Application

Let us consider the measurement Mk (performed with statis-

tical error bars �k with k 2 {1, 2, . . . N}) of the reflectivity of a

sample over N t.o.f. channels. We denote as m(q, p) the

theoretical reflectivity that depends on n physical parameters

that make the coordinates of the vector p. For a given t.o.f.

channel k of resolution function Rk, the expected theoretical

measurement Mth,k is given by

Mth;kðpÞ ¼
R

mðq; pÞRkðqÞ dq: ð32Þ

Let us define the mean relative distance �2 per channel

between M and Mth as

�2ðpÞ ¼
1

N

XN

k¼1

Mk �Mth;kðpÞ

�k

� �2

: ð33Þ

The parameter vector p can be determined experimentally by

minimizing �2 following a standard numerical optimization

procedure (curve fitting). The correctness of the resolution

function can thus be evaluated (i) from the correctness of the

parameter values thus determined and (ii) from the correct-

ness of the final match between M and Mth [a low value for �2

and no correlation in the residual (M � Mth)/�].

For such an evaluation, the sample candidate should display

a strong variation in reflectivity in the accessible q range, in

order to maximize the effect of convolution by the resolution

function [equation (32)] with a minimum number of unknown

parameters (coordinates of p). From this point of view, the

reflectivity near the total reflection plateau of the interface

between air and a smooth and pure solid is probably the most

suitable. We have chosen an amorphous silica block with a

polished surface, for which the reflectivity can be written

mðqÞ ¼
q� q2 � q2

cð Þ
1=2

qþ q2 � q2
cð Þ

1=2

" #2

exp ��2
hq q2 � q2

c

� �1=2
h i

: ð34Þ
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Figure 15
Plots of the exact resolution R(q) (solid lines) versus transfer vector
magnitude q for �0 = 1� and �0 = 15 Å (cross sections of the 3D plots of
Fig. 14) for the three configurations of Table 1. Dotted lines are Gaussian
curves of the same mean and standard deviation.

Figure 16
Reflectivity for an amorphous silica block in the region of the edge of
total reflection. (Top) Measurement M, best fit Mth [equation (32)] and
model m(q) [equation (34)] versus 1/q (because the channels are almost
regularly spaced in wavelength). (Bottom) The same data with the y
coordinates multiplied by q4. For these best fits, qc = 1.298, 1.306 and
1.292 � 10�2Å�1 and �2 = 1.11, 3.97 and 3.51 for the high-resolution,
medium-resolution and low-resolution configurations, respectively.



The first term of this product is the Fresnel reflectivity of a

perfectly flat surface, where qc = (16��)1/2 is the edge of the

total reflectivity plateau and � the scattering length density of

amorphous silica. The second term accounts for the surface

roughness of characteristic height �h. Measurements were

done in the three configurations of Table 1 for �0 = 1�. The

results and data fitting are plotted in Fig. 16. For the three

configurations, the values for �2 at the optimum are very small,

and the values determined for qc are in very good agreement

and consistent with the density of amorphous silica [here, qc =

(1.300 	 0.006) � 10�2 Å�1 leads to (2.13 	 0.02) g cm�3 for

the density of amorphous silica]. Note that the increase in �2

with the broadening of the resolution is simply due to the gain

in flux resulting in smaller statistical error bars �k in

equation (33).

The use of the exact resolution function as plotted in Fig. 14

could appear unnecessarily tricky compared with the use of a

Gaussian curve of the same average and standard deviation.

This is not the case for two reasons. First, the calculation of the

exact resolution function is needed anyway to determine the

average and standard deviation values of the Gaussian

approximation curve, and secondly, once this is achieved,

convolution by the exact resolution or its Gaussian approx-

imation requires the same computing power. Also, convolu-

tion by the exact resolution function will always produce

better results, in particular at low resolution. Best fits obtained

using the Gaussian approximation (computed over a support

half-width equal to three times the standard deviation) of the

exact resolution function were done for the examples given in

Fig. 16. The corresponding �2 values are 1.54, 15.1 and 218

(instead of �2 = 1.11, 3.97 and 3.51 with the exact function) for

the HR, MR and LR configurations, respectively. In Fig. 17

(top) the results for the two fits are compared for the LR

configuration of Table 1. The differences are subtle but they

are emphasized by plotting the residual (M � Mth)/� (Fig. 17,

bottom) which clearly shows correlations in the case of the

Gaussian approximation. It is important to emphasize that the

Gaussian approximation that we are discussing here should

not be confused with the resolution function that would be

calculated following the central-limit theorem, i.e. by adding

the variances of each term. Here, as the mean and standard

deviation values are correctly calculated (from the exact

resolution function), fitting using one or the other resolution

curve does not lead to significant differences in the parameter

best values, or in their confidence intervals, although the �2

values are very different. However, the Gaussian resolution

curve that could be produced by applying the central-limit

theorem leads to much less satisfactory parameter values. The

computation of the exact resolution profile is thus mandatory

to reach the most accurate data-fitting results.

By definition, using the exact resolution function is more

accurate than using its Gaussian approximation, but it also

saves time. Computation of the exact resolution function is

done only once during data reduction. The time spent is

negligible compared with the time needed for data fitting,

which consists of many iterations of the convolution of a

theoretical model by the resolution. The exact resolution

function has a compact support, whereas its Gaussian

approximation does not. Thus for a given high percentile, the

Gaussian approximation needs a more extended sampling and

thus is more time consuming during the data-fitting stage than

the exact function. This removes a lot of interest in the

approximation.

7. Conclusions

In this paper we have presented the calculation of the exact

and comprehensive resolution function for a t.o.f. neutron

reflectometer in a way that accounts for all contributions

without any assumption of the Gaussian distribution or

independence of the corresponding variables. The step-by-

step procedure comes with a fully documented Python module

(https://bitbucket.org/LLBhermes/pytof/), whose routines
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Figure 17
Reflectivity for an amorphous silica block in the region of the edge of the
total reflection plateau. (Top) Measurement M and best fits Mth using the
exact resolution or its Gaussian approximation (computed over an
interval half-width equal to three times the standard deviation). (Bottom)
(M �Mth)/�. The use of the exact resolution leads to �2 = 3.51 and of its
Gaussian approximation to �2 = 218.



match the equations and terminology of this paper. The

module can be easily used for numerical applications to any

specific case, from the computation of the resolution to data

fitting. In addition, the module allows the reader to reproduce

most of the figures of this paper and to change their para-

meters easily.

We have shown that, if the resolution is relaxed, the

resulting resolution function departs strongly from a Gaussian

profile and using the exact function provides much more

accurate results. This point will be highly relevant with the

emergence of compact and low-flux neutron sources (see e.g.

Ott, 2018) which will probably require such relaxed resolu-

tions.

Here we have tried to treat the different contributions to

the resolution of a t.o.f. neutron reflectometer in an exhaustive

but still general manner. However, some peculiar points,

which would require special attention, have not been exam-

ined, mainly detector resolution and pixel binning (Cubitt et

al., 2015) if a position-sensitive detector is used, and non-flat

samples (Cubitt et al., 2015). We hope this paper will help to

manage these particular cases.

References

Bodnarchuk, I., Manoshin, S., Yaradaikin, S., Kazimirov, V. &
Bodnarchuk, V. (2011). Nucl. Instrum. Methods Phys. Res. A, 631,
121–124.

Cousin, F. & Chennevière, A. (2018). EPJ Web Conf. 188, 04001.
Cubitt, R., Saerbeck, T., Campbell, R. A., Barker, R. & Gutfreund, P.

(2015). J. Appl. Cryst. 48, 2006–2011.
Fermi, E., Sturm, W. J. & Sachs, R. G. (1947). Phys. Rev. 71, 589–594.
Gutfreund, P., Saerbeck, T., Gonzalez, M. A., Pellegrini, E., Laver,

M., Dewhurst, C. & Cubitt, R. (2018). J. Appl. Cryst. 51, 606–615.
Nelson, A. R. J. & Dewhurst, C. D. (2013). J. Appl. Cryst. 46, 1338–

1346.
Ott, F. (2018). Compact Neutron Sources for Neutron Scattering.

Technical Report. CEA Paris Saclay, France. https://hal-cea.
archives-ouvertes.fr/cea-01873010.

Well, A. A. van (1992). Physica B, 180–181, 959–961.
Well, A. A. van & Fredrikze, H. (2005). Physica B, 357, 204–207.

research papers

476 Didier Lairez et al. � Resolution function of neutron t.o.f. reflectometers J. Appl. Cryst. (2020). 53, 464–476

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB4
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=ge5071&bbid=BB9

