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Small-angle neutron scattering has been successfully used since the 1970s. As a
general rule, methods to extract the useful signal from that received by the
detector are well known and give good results. At the Laboratoire Léon
Brillouin, for example, these methods have been employed for a long time.
However, the data reduction software has been changed for the following
reasons. Problems are encountered if the container of the sample gives a
spurious signal or if the scattering angle is so large that its cosine cannot be
approximated by 1. In the present paper, generalizations of formulas are made
in order to account for these difficulties. The decrease of scattered intensity
delivered by an incoherent sample that is often observed at large angles is shown
to be only due to a geometrical effect. The consequent modifications of the
relations used for the normalization of cells of position-sensitive detectors and
for the absolute calibration are given. As for the inherent background of the
sample, the contribution of density fluctuations is usually neglected. This
contribution is formally given as a function of the contrast lengths and of the
isothermal compressibility of the sample. This new result allows numerical
evaluations of the different terms of the inherent sample background. Practical
examples are given. Finally, several methods, developed at the Laboratoire Léon
Brillouin, are given to determine the background properly. They are based on
systematic measurements of transmissions and background levels of suitably
prepared blank samples.

1. Introduction

Small-angle neutron scattering (SANS) is an efficient tool to
study nanostructures at typical length scales ranging from 1 to
100 nm. This technique was developed through pioneering
work of the 1970s (Cotton et al., 1972; Stuhrmann, 1974;
Schmatz et al., 1974; Jacrot, 1976; Kostorz, 1979). It is nowa-
days widely used to determine characteristic sizes, molecular
weights, interactions, shapes and internal structures of
macromolecules, aggregates, colloids, biological systems and
inorganic materials.

The basics of SANS are now well known and taught in
textbooks (Kostorz, 1979; Feigin & Svergun, 1987; Higgins &
Benoı̂t, 1994). The primary steps of raw data reduction are
widely inspired by those of small-angle X-ray scattering
(Guinier, 1964; Cotton et al., 1974) and absolute calibration
methods are commonly used to determine the differential
scattering cross section in absolute units (Wignall & Bates,
1987; Cotton, 1991b; Lindner, 2002). However, prior to any
data analysis and comparison with physical models, it is
necessary to extract from the measured count rate the quan-
tity that is related to the space correlations of heterogeneities
(e.g. concentration fluctuations).

Actually, the first step of data treatment amounts to back-
ground subtraction. There are two categories of background:
external (environmental background, electronic noise, direct
beam overflowing, i.e. beam tail, scattering from sample
container) and inherent to the sample (incoherent scattering,
sample compressibility). The usual procedure consists of
subtracting the intensity scattered by a blank sample from that
of the sample under study (Rawiso et al., 1987; Wignall &
Bates, 1987; Cotton, 1991b; Calmettes, 1999; Lindner, 2002).
This generally gives good results. The approximations used are
(i) the scattering angle ! is so small that cos ! ¼ 1, (ii) the
sample container gives no signal and (iii) the sample is
incompressible. These approximations are sometimes not
reasonable. This paper aims to state their relevance and give
improved formulas for continuous neutron sources in the
context of the single scattering approximation.

In the following, we describe the different steps to extract
from the measured raw data the differential scattering cross
section of heterogeneities of a sample, i.e. its coherent scat-
tering cross section. First, we explain how to access the total
scattering cross section of the sample. The case of a sample in a
container is fully treated, as well as corrections for large
scattering angles (!> 10"). It then remains to extract the

electronic reprint



signal related to the space correlation of heterogeneities. We
show that isothermal compressibility in a multi-component
system is not always negligible. Subtraction of the inherent
background of the sample is also often complicated by
multiple scattering effects that are difficult to calculate in a
general way. These problems are widely encountered in most
samples of soft matter. In this field especially, it is possible to
overcome these difficulties by using appropriate blank
samples; their choice and the determination of the background
signal are discussed in x3. Finally, for some specific cases, we
describe practical methods to determine systematically the
inherent background of the sample.

2. From raw data to coherent differential scattering
cross section

2.1. Recall: usual data reduction for sample without
container

Let us denote "sðqÞ as the total scattering cross section of a
sample of volume V, with! as the solid angle. The differential
scattering cross section per volume unit ~""sðqÞ is

~""sðqÞ ¼
1

V

d"s
d!

: ð1Þ

The magnitude of the scattering vector q is defined by

q ¼ ð4#=$Þ sin !=2ð Þ; ð2Þ

where ! is the scattering angle and $ the neutron wavelength.
Classically, assuming scattering at a small angle !, the
approximation cos ! ’ 1 allows us to write the intensity Isð!Þ
scattered by a sample of thickness zs as (Guinier, 1964)

Isð!Þ ¼ "ð$ÞA%ð$Þ#!
Rzs

0

dx expð%&sxÞ ~""sðqÞ exp½%&sðzs % xÞ';

ð3Þ

where " is the neutron beam flux (number per time and
surface units), A the sample area exposed to the neutron
beam, %ð$Þ the detector efficiency, #! the detector cell solid
angle, x the position of the sample layer where scattering
occurs (see Fig. 1), and &s the linear attenuation coefficient of

the sample for neutrons. The term exp½%&sðzs % xÞ' accounts
for the attenuation of scattered neutrons due to absorption
and multiple scattering. Equation (3), commonly used, is valid
as long as multiple scattering is spread over a wide solid angle
and thus remains negligible at small angles.

Equation (3) yields the classical expression

Isð!Þ ¼ "ð$ÞA%ð$Þ#! zs expð%&szsÞ ~""sð!Þ
¼ zsTsCð$Þ ~""sð!Þ
¼ zsTsFsð!Þ: ð4Þ

The subscript s denotes the sample. In practice, Isð!Þ is the
measured count rate, the transmission Ts ¼ expð%&szsÞ is
measured during the experiment and the sample thickness
zs is known. Determination of the calibration constant
Cð$Þ ¼ "ð$ÞA%ð$Þ#! is required to obtain ~""sð!Þ in absolute
units (cm%1).

In the absence of the sample, the collimated beam reaches
the detector. Most of the beam is normally absorbed by a
beamstop, except the beam tail, which gives the corresponding
intensity, Fbð!Þ. In addition, an external background signal B
(electronic noise plus cosmic and ambiance neutrons coming
from neutron guides and other spectrometers) is recorded.
Then, the count rate recorded without a sample is

Ibð!Þ ¼ Fbð!Þ þ B:

Through the sample, this contribution is reduced to
TsFbð!Þ þ B. Thus, the scattered intensity of a sample is

Isð!Þ ¼ zsTsFsð!Þ þ TsFbð!Þ þ B: ð5Þ

In SANS, the scattering function Fsð!Þ is the sum of a coherent
signal and an incoherent term independent of q. The coherent
term (see x3) has two contributions: (i) space correlations of
heterogeneities, which is the information that the experi-
mentalist is looking for in most cases; (ii) density fluctuations
that display correlation lengths smaller than q%1 in SANS and
thus give a q-independent contribution. The sum of the two
q-independent contributions (incoherent plus density fluc-
tuations) is the inherent background of the sample. In order to
estimate this background, the scattered intensity, Ibk, of a
blank sample is usually measured. Using subscript bk to
denote the blank sample, we obtain, following equation (5),

Ibkð!Þ ¼ zbkTbkFbkð!Þ þ TbkFbð!Þ þ B: ð6Þ

The choice of an appropriate blank sample is difficult. It is
discussed in x3.

Finally, combination of equations (5) and (6) gives the
major formula of SANS data treatment:

Fsð!Þ % Fbkð!Þ ¼
Isð!Þ % B

zsTs

% Ibkð!Þ % B

zbkTbk

% 1

zs
% 1

zbk

! "
Fbð!Þ:

ð7Þ

In practice, measurements of Isð!Þ, Ibkð!Þ, Ibð!Þ and B are
necessary to determine the scattering function Fsð!Þ. External
background B is measured by placing a strong absorbent
(cadmium or B4C) at the sample position. Equation (7) clearly
shows that measurement of Fbð!Þ without a sample is neces-
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Figure 1
Scattering at angle !, by a layer of thickness dx situated at distance x from
the incoming face of a sample of thickness zs.
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sary as soon as the sample and its blank have a different
thickness. This is often the case with solid samples.

Generally, equation (7) is also used for a sample inside a
container, since the container contribution to scattered
intensity is expected to be accounted for by the blank sample
subtraction. As discussed below, in some cases this is not
correct.

2.2. Correction of the approximation cosh = 1

As mentioned above, equations (3) and (4) are valid for
small angles, when cos ! is close to unity. For large angles,
corrections must be applied. Actually, for a typical detector at
a distance D ’ 2 m from the sample, the maximum scattering
angle can be greater than 10" ðcos ! ’ 0:95Þ. Thus, for
experiments performed at smaller distances, the approxima-
tion cos ! ’ 1 is not recommended, especially if important
information is determined from high q range data, where the
signal-to-noise ratio is generally weak.

Three parameters in equation (4) depend on cos !: detector
cell solid angle, detector efficiency (Lindner et al., 2000) and
attenuation of the neutron beam scattered at the angle !. The
first two parameters play a role in the calibration constant
Cð$Þ; the correction to apply is discussed in x2.4.2. The present
section is concerned with the angle dependence of the beam
attenuation (Calmettes, 1999).

Let us consider neutrons scattered with probability ~""ð!; $Þ,
at an angle !, by a sample layer at abscissa x (see Fig. 1). The
beam intensity at this abscissa is attenuated by upstream
layers, whereas downstream layers contribute to attenuation
of the scattered intensity [see equation (3)]. This latter
attenuation depends on the actual sample thickness,
ðzs % xÞ= cos !, in this direction (Guinier, 1964). Thus equation
(3) can be replaced by

Isð!Þ ¼ "ð$ÞA%ð$Þ#!

Zzs

0

dx expð%&sxÞ ~""sðqÞ exp %&s

zs % x

cos !

# $
:

ð8Þ

This equation amounts to writing the beam attenuation asR z

0 dx expð%&sxÞ exp½%&sðzs % xÞ=cos !'. Assuming cos ! ¼ 1,
this latter integral equals z expð%&zÞ ¼ zT and is indepen-
dent of !. When this assumption is not valid, this integral
becomes zTð!Þ with

Tð!Þ ¼ T
1% Tað!Þ

%að!Þ lnðTÞ and að!Þ ¼ 1

cos !
% 1: ð9Þ

Here, lnðTÞ has been introduced in order to express Tð!Þ as a
function of transmission T measured at ! ¼ 0 (Calmettes,
1999). From a computational point of view, note that for
! ! 0 and/or T ! 1, Tð!Þ ! T is a ratio of two quantities
that tend to 0. In order to be easily calculated, equation (9) can
be replaced by the expansion

Tð!Þ ¼ TE1½að!Þ lnðTÞ'; ð10Þ

with E1ðxÞ ¼ 1þ x=2þ x2=6þ x3=24þ x4=120þ . . ., which is
calculated in practice up to the fourth order.

The scattering angle dependence of the transmission is
more important for low Tð0Þ and high !. Fig. 2 shows some
examples. The angle of dependence of transmission is negli-
gible for Tð0Þ>* 0:8, but has to be considered for lower Tð0Þ,
especially at high q. Moreover, the angle dependence of the
transmission also influences the contribution, Fbð!Þ, of the
beam tail to the measured scattered intensity. Equation (7) can
be generalized

Fsð!Þ % Fbkð!Þ ¼
Isð!Þ % B

zsTsð!Þ
% Ibkð!Þ % B

zbkTbkð!Þ

% Tað!Þ
s

zs
% Tað!Þ

bk

zbk

" #
Fbð!Þ: ð11Þ

This correction for attenuation at high scattering angles
(!> 10") and its effect on subtraction of the beam without a
sample are often missing in SANS data reduction procedures.

2.3. Scattering by a sample inside a container

In the case of a sample inside a container, we have to
subtract from the measured scattered intensity the contribu-
tion, IECð!Þ, of the empty container. The calculation is given in
Appendix A for a container with two windows (before and
after the sample with respect to the neutron beam) made in
the same material and having the same thickness. It is assumed
that (i) there is no correlation between the atoms of the
sample and those of the container and (ii) multiple scattering
has a negligible contribution to the scattered intensity but may
only attenuate scattered intensity [see equations (3) and (8)].

Uppercase subscript S denotes the sample in its container,
whereas lowercase subscript s denotes the same sample
without container. In Appendix A, we demonstrate that the
scattered intensity is
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Figure 2
Scattering angle dependence, Tð!Þ=Tð0Þ, of the sample transmission
calculated following equation (9) for different values of the zero-angle
measured transmission Tð0Þ. The upper abscissa axis corresponds to the
scattering vector q for $ ¼ 5 Å.
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Fsð!Þ ¼
ISð!Þ % B

zsTS'Sð!Þ
% (Sð!Þ

IECð!Þ % B

)ECð!ÞTEC

% &

þ (Sð!Þ
Tað!Þ
EC

)ECð!Þ
% Tað!Þ

S

)Sð!Þ

" #
Fbð!Þ: ð12Þ

The dimensionless quantities 'Sð!Þ and )Sð!Þ tend to 1 for
! ! 0 and/or T ! 1. They are defined by

'Sð!Þ ¼ Tað!Þ=2
EC

% TS=TEC

' (að!Þ

%að!Þ ln TS=TEC

' (

¼ E2 að!Þ ln TEC

' () *
+ E1 að!Þ ln TS=TEC

' () *
ð13Þ

and

)Sð!Þ ¼ 1þ TS

T1=2
EC

 !að!Þ
2

4

3

5+ 1% Tað!Þ=2
EC

%að!Þ lnðTECÞ

¼ E3 að!Þ ln TS=T
1=2
EC

' () *
E4½að!Þ lnðTECÞ'; ð14Þ

with E2ðxÞ ¼ 1þ x=2þ x2=8þ x3=48þ x4=384þ . . ., E3ðxÞ ¼
1þ x=2þ x2=4þ x3=12þ x4=48þ . . . and E4ðxÞ ¼ 1þ x=4þ
x2=24þ x3=192þ x4=1920þ . . .. The quantity (Sð!Þ has the
dimension of a reverse thickness. It is defined as

(Sð!Þ ¼
1

zs

)Sð!Þ
'Sð!Þ

: ð15Þ

From the above expansions of 'Sð!Þ and )Sð!Þ, one can see
that (Sð!Þ benefits from cancellation of opposite variations
with !. In practice

(Sð!Þ ’ 1=zs: ð16Þ

Equations (12)–(15) only use measurable quantities such as
transmission of the container, TEC, and transmission of the
sample inside its container, TS, which is related to the actual
transmission Ts by TS ¼ TECTs. The same formulas also apply
to the blank sample Fbkð!Þ. Finally, the difference
Fsð!Þ % Fbkð!Þ is

Fsð!Þ % Fbkð!Þ ¼
ISð!Þ % B

zsTS'Sð!Þ
% IBKð!Þ % B

zbkTBK'BKð!Þ

% IECð!Þ % B

)ECð!ÞTEC

(Sð!Þ % (BKð!Þ
) *

þ Fbð!Þ
Tað!Þ
EC

)ECð!Þ
(Sð!Þ % (BKð!Þ
) *

(

þ Tað!Þ
BK

zbk'BKð!Þ
% Tað!Þ

S

zs'Sð!Þ

)
: ð17Þ

The subscript BK denotes the blank sample inside the
container. We can see from this equation that, in most cases,
measurements of the empty container as well as of the beam
without sample are both required. Equation (17) should be
used systematically in all treatments of SANS data. The
program PAsidur-PRO (Lairez, 2006) at the Laboratoire
Léon Brillouin (LLB) now performs all these corrections.

In the case of sample and blank of the same thickness,
equation (16) allows us to simplify equation (17) to

Fsð!Þ % Fbkð!Þ ¼
ISð!Þ % B

zsTS'Sð!Þ
% IBKð!Þ % B

zbkTBK'BKð!Þ

% Fbð!Þ
Tað!Þ
S

zs'Sð!Þ
% Tað!Þ

BK

zbk'BKð!Þ

" #
: ð18Þ

Measurement of the beam without sample is still necessary.
At small angles, i.e. for cos ! ’ 1, equation (17) simplifies to

Fsð!Þ % Fbkð!Þ ¼
ISð!Þ % B

zsTS

% IBKð!Þ % B

zbkTBK

% 1

zs
% 1

zbk

! "
IECð!Þ % B

TEC

: ð19Þ

In this case, and if the sample and blank thicknesses differ,
only measurement of the scattering of the empty container is
needed.

In order to test the efficiency of equation (17) for data
reduction, the scattered intensity of a solid sample made of
a mixture of 2% (v/v) deuterated polystyrene (PSD) and
98% (v/v) non-deuterated polystyrene (PSH) inside an
aluminium alloy container of 2+ 1:5 mm thickness was
measured. Because of the grain boundaries of metallic alloys,
the container significantly contributes to the measured signal
at small angles (see Fig. 3). Nevertheless, such materials are
frequently used in shear cells, in pressure devices, in supra-
conducting magnets or for other sample environments.
Measurements were performed at $ ¼ 6 Å and D ¼ 2:38 m
(!< 8"). The sample and its blank were also measured without
the container. The spectra recorded for the sample in the
container and for the sample and container apart are reported
in Fig. 3. The blank sample is a pure PSH solid sample. Its
incoherent signal was measured in the same conditions as the
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Figure 3
Ratio F=Fwater of scattering functions of different samples to that of
1 mm-thick layer of water versus scattering vector q. Full triangles:
0.5 mm-thick solid sample made of 2% (v/v) deuterated polystyrene
(PSD) and 98% (v/v) non-deuterated polystyrene (PSH) in a 3 mm-thick
Al alloy container. Hollow circles: empty container. Full circles: solid
sample alone. Hollow triangles: beam without sample. Measurements
performed on PACE (LLB) at $ ¼ 6 Å,D ¼ 2:38 m. Statistical error bars
are smaller than the data symbols.
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sample and subtracted from the corresponding sample signals.
Fig. 4 shows the data reduction (i) using all corrections
[equation (17)] and (ii) using the usual approximation
[equation (7)]. It appears that equation (17) allows us to
account correctly for the container contribution and to
superimpose scattering curves obtained for the sample alone
and within the container. On the other hand, the usual data
reduction method [equation (7)] leads to a huge over-
estimation of sample scattered intensity.

Note that our procedure for subtraction of the empty
container contribution is valid whatever the origin of the
scattering by the empty cell: coherent or incoherent. It is thus
more general than the alternative procedure previously
reported (Horkay et al., 1991). In addition, our procedure is
even valid for anisotropic scattering of the container, once
isotropic averaging of the data has been performed. In the
case of anisotropic scattering of the sample itself, the proce-
dure remains equally valid but data treatment has to be
performed without isotropic averaging.

2.4. Normalization of detector efficiency and absolute
measurements

In order to account for different efficiencies of detector
cells, normalization is achieved by dividing the signal of the
sample by that measured with a reference sample giving a high
flat signal (note that in this paper the term ‘normalization’ is
always used with this meaning). Such a reference sample is
generally a hydrogenated sample since the incoherent cross
section of hydrogen is very high. The scattering function,
Frefð!Þ, of this reference sample is obtained from the measured
scattered intensity, IREF, once the ‘beam without sample’ and
‘empty container’ contributions have been adequately
subtracted in the same way as for the sample [see equation
(12)]:

Frefð!Þ ¼
IREFð!Þ % B

zrefTREF'REFð!Þ
% (REFð!Þ

IECð!Þ % B

)ECð!ÞTEC

þ (REFð!Þ
Tað!Þ
EC

)ECð!Þ
% Tað!Þ

REF

)REFð!Þ

" #
Fbð!Þ: ð20Þ

Finally, to obtain the absolute values of the differential scat-
tering cross sections (in cm%1) after data normalization, it is
necessary to calculate

~""sð!Þ % ~""bkð!Þ ¼
hFrefð!Þi
Cð$Þ + Fsð!Þ % Fbkð!Þ

Frefð!Þ
; ð21Þ

where Cð$Þ is the calibration constant [see equation (4)] and
hFrefð!Þi is the mean value of the incoherent scattering func-
tion used for normalization. To determine absolute values of
the differential scattering cross section, different calibration
methods can be equally used (Jacrot & Zaccaı̈, 1981; Wignall
& Bates, 1987; Ragnetti et al., 1985; Russell et al., 1988; Cotton,
1991b; Glinka et al., 1998; Lindner, 2002). Here, we only
discuss the choice of the incoherent scatterer and the origin of
deviations of the reference spectra from the expected flat
profile, which are often observed.

2.4.1. Incoherent scatterer and multiple scattering. The
reference sample can be an incoherent scatterer, such as
highly hydrogenated samples. Among hydrogenated samples,
a 1 mm-thick layer of water is a good choice. If experiments
are performed in solutions of a hydrogenated solvent, the
latter suits very well. A hydrogenated solid polymer such as
poly(methylmethacrylate) or polycarbonate of about 1 mm
thickness is also suitable, provided that its surfaces are not
scratched (Ghosh & Rennie, 1999).

Once normalization is achieved, dimensionless spectra are
obtained. The spectra then need to be multiplied by the cross
section of the incoherent scatterer that has been chosen as
reference sample [equation (21)]. Most of the hydrogenated
reference samples used in SANS have a thickness close to the
mean free path, $, of neutrons. However, their height and
width are much larger (’ 10$). This means that neutrons
scattered in these directions interact several times and have no
chance to exit the sample at ! ¼ 90". Their probability of
going out forwards or backwards is thus increased (May et al.,
1982; Calmettes, 1999). This explains why the apparent cross
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J. Appl. Cryst. (2007). 40, 165–177 Annie Brûlet et al. ) Improvement of data treatment in SANS 169

Figure 4
Comparison of the usual [equation (7)] and improved [equation (17)]
data reduction methods for the measurements of Fig. 3. The reference
spectrum is measured for the sample without container (F3). For
measurement of the same sample in a container that contributes to
scattered intensity, the challenge for data treatment is to obtain a result as
close as possible to the reference spectrum. This is achieved using
equation (17) (F2 superimposes to F3) whereas the usual method fails
[equation (7), F1 does not superimpose to F3].
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section of hydrogen can be found to be up to twice its nominal
value of 80 barns.

In addition to this geometrical effect on the apparent cross
section of the hydrogenated reference sample, it is important
to emphasize the role of inelastic scattering that occurs at high
q (q> 1 Å

%1
) but adds to the forward signal as a result of

multiple scattering. For such a reference sample, scattered
neutrons reaching the detector display a wide distribution of
wavelength. Thus, the measured count rate varies with the
wavelength dependence of the detector efficiency [see equa-
tion (23) below].

As a major consequence, the apparent cross section of a
given reference sample, i.e. the calibration factor, is a char-
acteristic of each spectrometer. For instance, a difference of
about 20% is observed at 5 Å between PACE (LLB) and D11
(ILL). Thus, calibration curves that have been published for
specific spectrometers (May et al., 1982; Ragnetti et al., 1985)
cannot be universal (Lindner, 2002).

2.4.2. Deviation of reference signal from a flat shape. In
many cases, measured reference signals deviate from the
expected flat profile and decrease at high q. The argument
generally used to explain this observation is the multiple
scattering that has been discussed in the previous section; the
apparent cross section of the hydrogenated reference sample
is increased in the forward direction and falls down at ! ¼ 90".
An angular dependence is thus expected and usually invoked
to account for decreasing incoherent signals (Calmettes, 1999).
In this section, we show that the decrease of the incoherent
signal is properly accounted for using some simple geometrical
arguments. Three contributions have to be considered:

(i) Angular dependence of the transmission [see equation
(9) and Fig. 2] leads to a decrease of the measured intensity
with !.

(ii) Absence of curvature of the detector (Lindner et al.,
2000). The real solid angle of detector cell of area s is

#!ð!Þ ¼ s cos !

D= cos !ð Þ2
¼ #!ð0Þ cos3 !: ð22Þ

This leads to a decrease of the measured intensity with !.
(iii) Detector efficiency % depends on the actual thickness

z0=cos ! of detection gas in the direction ! (Lindner et al.,
2000). This is expressed as

%ð$; !Þ ¼ 1% exp½%&ð$Þz0=cos !'; ð23Þ

where &ð$Þ is the lineic absorption coefficient of the detection
gas. It is a characteristic of the detector, proportional to the
wavelength, and depends on the detection gas, pressure and
thickness. For instance, &ð$Þz0=$ ¼ 0:20 Å

%1
on the PACE

spectrometer at LLB. Equation (23) corresponds to an
increase of detector efficiency with scattering angle.

Finally, for an incoherent signal which is normally inde-
pendent of the scattering angle, the actual measured intensity
varies as

Irefð!Þ ¼ Frefð!ÞzrefTrefð!Þ
%ð$; !Þ
%ð$; 0Þ cos

3 !: ð24Þ

In order to check the validity of this expression, it is first
necessary to take into account the ‘gondola defect’ often
observed on multidetectors (Fig. 5). This is due to a regular
increase of the thickness of the detection gas (BF3 or He) from
the center to the border of the detector (Lindner et al., 2000).
The gondola defect increases detector efficiency with scat-
tering angle. It is observed on PAXYand PAXE at LLB, but it
is not observed on our third spectrometer PACE. In practice,
the gondola defect does not affect the shape of spectra as long
as normalization is achieved using a reference sample
measured using the same spectrometer configuration as for
the sample. However, it has to be taken into consideration to
test the validity of equation (24).

At small angles, the variation of Irefð!Þ reported in equation
(24) is negligible and measurements allow us to estimate the
gondola effect. In Fig. 5, the scattered intensity of a sheet of
poly(methylmethacrylate) measured on two spectrometers
(PACE and PAXYat LLB) with a sample-to-detector distance
D ’ 3 m are compared. The deviation from a flat profile is due
to the gondola effect. PACE is free from this defect and is used
in the next section to test equation (24).

In Fig. 6, the incoherent signal of a water layer of 1 mm
thickness is compared with equation (24) with the zero q
scattered intensity as the only adjustable parameter. One can
see that equation (24) fully accounts for the decrease of Irefð!Þ.
As a consequence, for a given configuration (D, $) of the
spectrometer, a hydrogenated sample is suitable for normal-
ization of measurements following equation (21), at least up to
q values of 0.7 Å%1, the upper limit of our SANS experiments.

2.4.3. Fast measurement of reference signal. Frequently,
scattered intensity is measured at different detector positions,
D, and wavelengths, $. Then, superimposition of data obtained
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Figure 5
Scattered intensity of 1 mm-thick poly(methylmethacrylate) (PMMA)
divided by the value at q ! 0 versus detector cell number (cell number 0
is the nearest to the beam). Circles: spectrometer PAXY, LLB (D = 3 m,
$ = 10 Å). Diamonds: spectrometer PACE, LLB (D ¼ 2:5 m, $ ¼ 6 Å).
In this q range geometrical effects due to cos ! 6¼ 1 can be neglected. The
deviation from the expected flat profile is due to the gondola effect. Lines
are guides for the eyes.
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under different configurations requires normalization
measurements and absolute calibrations for each configura-
tion. At large distances and large wavelengths, measurements
require a long time to obtain good statistics. Actually, (i) the
incoherent count rate scales as the solid angle 1=D2, (ii) an
appropriate symmetric collimation of neutron beam decreases
the flux by the same factor, 1=D2, and (iii) the neutron flux
through a mechanical selector decreases roughly as 1=$4.
Therefore, at small angle q / ð$DÞ%1, the time needed to
measure the flat scattering of an incoherent sample decreases
as q%4. Good normalization measurements at low q would
require a huge amount of beam time. However, equation (24)
can be used to improve the statistics and save time. Actually,
only measurement of the incoherent signal at a short distance
(with the same wavelength and beam collimation) is needed.
Equation (24) allows us to calculate the normalization spec-
trum that has to be used for reduction of data obtained at
smaller q. For instance, if normalization measurement is
performed at D ¼ 1 m instead of D ¼ 5 m, the corresponding
beam time is reduced by 25, i.e. the ratio of solid angles.

This method gives very good results, as shown in Fig. 7,
which reports measurements of scattered intensity of a 1 mm
thick layer of water in a quartz container. Measurements are
performed at $ ¼ 4:5Å and D ¼ 0:76, 2.38 and 4.6 m,
respectively. Beam collimation is ensured by two diaphragms
(* ¼ 7 and 12 mm) separated by 2.5 m for the two smallest

distances and by 5 m for the highest one. For this reason, data
obtained at D ¼ 4:6 m are multiplied by a factor 4 to account
for the corresponding beam flux. In Fig. 7, once angular
corrections of equation (24) are taken into account, the three
spectra superimpose within 2% error bars (even detector
defects are reproduced). Such a difference is weak compared
with the other errors for absolute calibration.

3. Determination of the inherent sample background

Another problem of SANS data reduction is concerned with
the proper subtraction of the inherent sample background. In
the following, we first recall the expression for the scattering
cross section of a sample (x3.1). Then, we discuss the choice of
an ideal blank sample and explain how to determine the
inherent sample background from the scattering of an actual
blank sample (x3.2).
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Figure 6
Top: raw incoherent signal, Irefð!Þ, of 1 mm of H2O measured on the
spectrometer PACE at high q (D = 0.65 m; $ = 4.5 Å). The full line is
equation (24) with Iq!0 as the only adjustable parameter. Bottom:
incoherent scattering function, Frefð!Þ ¼ Irefð!Þ= Tð!Þ%ð$; !Þ cos3 !

) *
. The

expected flat profile is recovered. Note that even the first and last points
of the spectrum, which show a large deviation from the curve due to the
beam stop and edges of the detector, are finally accounted for after the
last stage [equation (21)] of data treatment (see for instance Fig. 4).

Figure 7
Scattered intensity, Fref , of a 1 mm-thick layer of water in a quartz
container measured on PACE at LLB at $ ¼ 4:5 Å and three different
distances, D, between sample and detector. Bottom and middle:
Fref ¼ Iref= Tð0Þ#!ð0Þ½ ' versus scattering vector q or detector cell
number. The Fref so calculated corresponds to the approximation
cos ! ¼ 1. Data measured at high q display a different profile. Top:
Fref ¼ Iref%ð$; 0Þ= Tð!Þ%ð$; !Þ#!ð!Þ½ ' calculated following equation (24).
The three spectra superimpose well.
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3.1. Expression of the scattering cross section of a sample

Let us consider a generalized solution of volume V made of
different chemical species. ' ¼ 1 denotes the solvent and
' ¼ 2m the different solutes. For each component, v' is the
partial molar volume, a' the coherent scattering length,
b' ¼ a' % a1v'=v1 the contrast length (b1 ¼ 0), and
x' ¼ n'v'=V the volume fraction occupied by the n' mol-
ecules. The coherent scattering cross section per volume and
solid angle units, ~""ðqÞ, is expressed as a function of concen-
tration and density fluctuations as (Cotton, 1991a)

~""ðq< q,Þ ¼ ð1=VÞ
P
';)

b'b)S')ðqÞ þ AskT+
s
T

¼ sðqÞ þ AskT+
s
T : ð25Þ

sðqÞ is the coherent scattering cross section of concentration
fluctuations and is the interesting quantity. +s

T is the
isothermal compressibility of the solution and q, the reverse
correlation length of density fluctuations (Cotton, 1991b). In
practice, q, > 0:5 Å%1. The contribution of compressibility to
the coherent scattered intensity is weighted by the contrast
factor As:

As ¼
a1
v1

Xm

1

x'
v'

b' þ a'ð Þ: ð26Þ

As x1 ¼ 1%
Pm

'¼2 x', As can be rewritten as

As ¼ A1 1þ 2
v1
a1

Xm

2

x'
b'
v'

 !

with A1 ¼
a21
v21
: ð27Þ

Assuming that the partial molar volume of pure solvent
remains unaffected with solute addition, As is simply
expressed as a function of solvent characteristics A1.

For neutrons, scattering depends on the isotope and on the
spin state of the nucleus. The corresponding fluctuations cause
an additional contribution to the scattering cross section:
V ~""inc. If ainci ¼ ðha2i i%h aii2Þ

1=2 is the incoherent scattering
length of the ith nucleus of scatterer ' (with i ¼ 1N'), the
incoherent scattering cross section, ~""inc, of the solution can be
written as

~""inc
s ¼ ð1=VÞ

Pm

'¼1

n'
PN'

i¼1

ainci

' (2
% &

¼
Pm

'¼1

ðx'=v'Þ
PN'

i¼1

ainci

' (2
% &

¼
Pm

'¼1

~""inc
' ; ð28Þ

where ~""inc
' is the incoherent scattering cross section per solid

angle and per volume unit of species '. Finally, the total
scattering cross section per solid angle and per volume unit is

~""sðqÞ ¼ ~""ðqÞ þ ~""inc
s

¼ sðqÞ þ AskT+
s
T þ ~""inc

s : ð29Þ

It is deduced from the measurement of scattering intensity
following equation (4). Nevertheless, sðqÞ is the meaningful
function for the sample structure [see equation (25)] and the
problem is to evaluate the q-independent terms of equation
(29), i.e. the inherent sample background:

~""sbkg ¼ AskT+
s
T þ ~""inc

s : ð30Þ

This is achieved by measuring the scattered intensity of a
blank sample.

3.2. Choice of a blank sample

An ideal blank sample would display a scattering cross
section, ~""bk, independent of q, such as

~""sbkg ¼ ~""bk ¼ AbkkT+
bk
T þ ~""inc

bk : ð31Þ

In principle, a blank sample having the same incoherent
scattering cross section as the sample to be studied can be
easily prepared. However, the contrast weighting coefficient of
density fluctuations will probably differ. Comparing density
fluctuations and incoherent scattering contributions with the
scattered intensity for simple cases (see Appendix B), it
appears that +s

T and +bk
T can both be neglected for solutions

in hydrogenated solvents. For instance, the ratio
~""inc
bk =ðAbkkT+

bk
T Þ ’ 7300 for H2O. However, for a deuterated

solvent, compressibility has to be taken into account:
~""inc
bk =ðAbkkT+

bk
T Þ ’ 1:4 for D2O. These two cases are discussed

in the next sections.
3.2.1. Incoherent scattering predominates. In this case, the

sample inherent background can be reasonably estimated by

~""sbkg ’ ~""inc
s : ð32Þ

A first approximation would be to use the pure solvent as
blank sample. Its incoherent intensity, ~""inc

bk , however, differs
from that of the sample, ~""inc

s , owing to the solute. Nevertheless,
knowing the sample composition and the volume fraction of
solute, it is possible from tables (Sears, 1992) to calculate the
ratio ~""inc

s = ~""inc
bk

' (
calc

of the expected scattering cross sections.
Then, the actual incoherent scattering cross section of the
sample could be estimated by

~""inc
s ’ ~""inc

bk ~""inc
s = ~""inc

bk

' (
calc

; ð33Þ

where ~""inc
bk is the measured incoherent scattering cross section

of the solvent (see Appendix B). Unfortunately, this is not
valid because multiple scattering (Calmettes, 1999; Strunz et
al., 2000) causes the measured intensity to be much higher
than and not proportional to the calculated intensity (see
x2.4.1). Note that this problem cannot be bypassed by
decreasing the sample thickness as the effect is due to the
sample size in the directions perpendicular to the neutron
beam.

More properly, a blank sample has to be prepared using a
mixture of deuterated and non-deuterated solvent. Assuming
that deuteration does not change the partial molar volume, the
volume fraction xslvD of deuterated solvent in this blank
sample needs to fulfill the condition

~""inc
s ¼ ~""inc

bk ¼ ð1=v1Þ xslvD aincslvD

' (2þð1% xslvDÞ aincslvH

' (2h

þ xslvDð1% xslvDÞ aslvD % aslvHð Þ2
*
; ð34Þ

with ~""inc
s calculated following equation (28).
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A blank sample so prepared, measured with the same
wavelength and container geometry, displays the same trans-
mission and the same multiple scattering as the sample. The
incoherent signal so measured can be adequately subtracted
from the scattered intensity of the sample. At this point, one
may question why the sample and the blank have the same
transmissions while the sample displays an additional impor-
tant central scattering. Actually, transmission takes into
account the integral over 4# steradians of incoherent and
coherent scattering. The coherent contribution is negligible
for the blank (this section is precisely concerned with this
case), while it is concentrated in a few 10%3 steradians for the
sample. The latter integral is often negligible compared with
the incoherent contribution.

As an example, for a solution at 0.1 g cm%3 of D-polystyrene
in H-benzene, the proper blank contains 28% (volume frac-
tion) of D-benzene (see Appendix B). This high volume
fraction is a result of the composition fluctuations term, i.e. the
last term in equation (34). Note that possible isotopic
exchange in solvent mixtures (as in H2O/D2O mixtures)
results in a still higher incoherent background, since the
solvent mixture contains more than two components (see
Appendix B).

Sometimes, because of inaccuracy of volume or weight
measurements, a blank sample prepared following equation
(34) does not display exactly the same transmission as the
sample. Then a good approximation consists of multiplying the
blank spectrum by the ratio of the logarithm of blank trans-
mission to that of sample transmission.

3.2.2. Incoherent scattering does not predominate. In this
case, exact calculation of the inherent sample background
following equation (30) is not easy because +1

T is known for
pure solvents (see Appendix B), but +s

T is generally unknown
for solutions. A reasonable approximation assumes +s

T ’ +1
T.

Then, equation (30) becomes

~""sbkg ’ AskT+
1
T þ ~""inc

s ð35Þ

where As and ~""inc
s can be calculated following equations (27)

and (28), respectively. Examples are reported in Table 1. In
this table, our better estimation of ~""sbkg given by equation (35)
is used to compare the accuracy of the usual approximations
that consist of (i) using the pure solvent as blank:
~""bk1 ¼ A1kT+

1
T þ ~""inc

1 ; (ii) using a blank made of H and D
solvent with the same incoherent scattering cross section as
the sample: ~""bk2 ¼ AxkT+

1
T þ ~""inc

s .
The consequences of such errors are especially important at

high q where coherent scattering is generally weak.
A proper blank sample would be a mixture of H and D

solvents obtained by a calculation similar to that described in
the previous section [see equation (34)] but accounting for the
difference in compressibility terms. Such a blank sample
would now fulfill the condition

~""sbkg ¼ AbkkT+
1
T þ ~""inc

bk ð36Þ

with

Abk ¼ A1 1þ 2xslvD
aslvD
aslvH

% 1

! "% &

and

~""inc
bk ¼ 1

v1
xslvD aincslvD

' (2þð1% xslvDÞ aincslvH

' (2h

þ xslvDð1% xslvDÞ aslvD % aslvHð Þ2
*
;

with ~""sbkg calculated following equation (35). In equation (36),
the only unknown quantity is xslvD and, in principle, a blank
could be prepared solving this equation. However, in practice,
this would be tedious, particularly in the case of a long series
of different samples.

3.3. Systematic methods for inherent background calibration

During a long series of measurements with similar samples,
it is possible to reduce the beam time devoted to determina-
tion of inherent backgrounds by making a calibration curve of
the background level. As stressed above, measurements on
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Table 1
Examples of different contributions in the inherent background of a solution.

c is the solute concentration. Subscripts 1, 2 and s refer to solvent, solute and solution, respectively. ~"" is a differential cross section per volume unit. xslvD is the
fraction of deuterated solvent in a blank composed of H and D solvent with the same incoherent scattering cross section as the sample. A1kT+

1
T , AxkT+

1
T and

AskT+
1
T are the compressibility contributions to scattered intensity of pure solvent, of a blank with a fraction xslvD of deuterated solvent and of the sample,

respectively. ~""inc
s is the incoherent contribution to the inherent background of the sample. Err1 ¼ ð ~""bk1 % ~""sbkgÞ= ~""sbkg is the error using the pure solvent as blank.

Err2 ¼ ð ~""bk2 % ~""sbkgÞ= ~""sbkg is the error using a blank with a fraction xslvD of deuterated solvent. Negative values correspond to underestimations and positive values
to overestimations.

c ~""inc
1 ~""inc

2 xslvD A1kT+
1
T AxkT+

1
T AskT+

1
T ~""inc

s Err1 Err2
Solution (10%2 g cm%3) (10%2 cm%1) (10%2 cm%1) (%) (10%2 cm%1) (10%2 cm%1) (10%2 cm%1) (10%2 cm%1) (%) (%)

PSH/C6D6 10 0.611 2.95 94.2 1.164 1.052 0.990 3.564 %60 %1.4
1 0.658 0.295 99.4 1.164 1.115 1.148 0. 953 %13 0.28

C6D6† 1.164 0.668
PSD/C6H6 10 24.3 0.079 28.2 0.0554 0.211 0.102 24.33 6.3 %0.45

1 25.9 0.0079 10.6 0.0554 0.103 0.060 25.94 %0.17 %0.16
C6H6† 0.055 25.9
PSD/CS2 10 0.00110 0.070 0.057 0.101 0.071 %66

1 0.00180 0.0070 0.057 0.061 0.008 %16
CS2† 0.057 0.001

† Values from Table 2.
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samples and blanks have to be performed in conditions
leading to the same multiple scattering effect, i.e. with same
wavelength and same thickness. Here again, two cases have to
be considered depending on the incoherent background.

3.3.1. Calibration for high incoherent background. This is
the case of a hydrogenated matrix (solids or solutions). The
method involves measuring scattering intensities of a series of
blanks composed of H and D solvents, varying the volume
fraction of D solvent in a range of concentration such that the
blank transmissions cover those of the samples. As flat signals
are expected for these blanks, the statistics are increased by
averaging each spectrum over q. Then, an accurate reference
curve, C1, of the level of the incoherent signal as a function of
the transmission, Tbk, is experimentally determined:

~""bk ’ ~""inc
bk ¼ C1ðTbkÞ: ð37Þ

The inherent background of the sample is then determined
from the value of its transmission as equal to
~""sbkg ’ ~""inc

s ¼ C1ðTsÞ.
Note that the use of transmission as a characteristic for the

incoherent scattering is valid if absorptions of samples and
solvent mixtures are negligible. This is the case of most organic
solvents.

3.3.2. Calibration for a series of solid samples. For a series
of solid samples, some difficulties may arise from the control
of sample thicknesses or inaccuracy in their measurements
(for instance due to sample roughness or mechanical stress).

For such a series with a given amount of incoherent scat-
terers, both the incoherent scattering and the sample trans-
mission depend unambiguously on the sample thickness. Thus,
two calibration curves can be obtained from the measurement
of a few blank samples having different well controlled
thicknesses.

~""bk ’ ~""inc
bk ¼ C2ðTbkÞ;

zbk ¼ C3ðTbkÞ:
ð38Þ

The first calibration curve is identical to equation (37),
whereas the second aims to provide the sample thickness from
its transmission: zs ¼ C3ðTsÞ.

For instance, this method has been used for the study of the
relaxation of conformation of stretched solid polymers
(Fourmaux-Demanges, 1998). Samples were made of a
mixture of 50% of D-labelled polymers (with only 17% of
protons replaced by deuterium) and 50% of H polymers
(without deuterium) in order to access the single chain form
factor. In this case, for the different thicknesses needed for the
calibration curve, ~""bk is calculated as equal to the half sum of
the scattering intensities delivered by a 100% H polymer
sample and a 100% D-labelled polymer sample.

Note that in the case of solid blank samples surface
roughness may be responsible for small-angle scattering. Thus,
the scattering cross section ~""bk that has to be accepted for the
calibration curve corresponds to the high q limit of the spec-
trum.

3.3.3. Calibration for weak incoherent background. In this
case, the role of density fluctuations in the scattered intensity
of a blank sample cannot be neglected. As these fluctuations

mainly contribute to high q signals (for instance the first-
neighbor correlation peak in liquids), transmission of the
sample does not reflect scattered intensity measured at low q
(for instance an increase of the signal at high q should be
responsible for a decrease of transmission but would probably
have no effect on scattered intensity at low q). The transmis-
sion value is not a characteristic of the background level.

From equation (36), it appears that for the blank this
characteristic can be more adequately taken as the volume
fraction, xincbk , of incoherent scatterers (the minority species):

~""bk ¼ AbkkT+
1
T þ ~""inc

bk ¼ C4ðxincbk Þ: ð39Þ

The reference curve C4ðxincÞ is obtained by preparing different
blanks varying xincbk . For a given sample, an ideal blank
composition, xincs , can be calculated following equation (36).
The inherent background of this sample is thus approximated
as equal to C4ðxincs Þ and deduced from the reference curve.

4. Conclusion

This paper provides a survey of problems for background
subtraction in SANS experiments.

Our first discussion is devoted to data obtained at scattering
angles above 10" where cos ! differs significantly from 1.
Angular corrections play a role in transmission values and in
the efficiency of the detector. For instance, the decrease of the
scattering intensity of water at large angles is shown to be due
to a geometrical effect that can be easily corrected. This result
suggests a method for measuring quickly the reference scat-
tering needed for normalization of cells of the position-
sensitive detector when it is far from the sample and the
neutron count rate is too weak.

Secondly, we discuss the case of a sample container that
gives spurious scattering. The proper method allowing
subtraction of this contribution to sample scattering is given
and has been experimentally verified. Note that the correct
subtraction method requires measurements of both ‘empty
container’ and ‘beam without sample’ scattering. As a result, it
is possible to use containers with strongest windows which are
useful for studies of samples under high pressures, very low or
very high temperatures, and under stress.

Thirdly, subtraction of the inherent sample background is
considered. Two complications arise. The first is multiple
scattering that occurs with incoherent scatterers. It comes
from the geometry of the sample containers used to maximize
the neutron flux. It is difficult to calculate, so we only give
methods allowing for the preparation of blank samples deli-
vering the same multiple scattering as that of the sample. The
second complication is the contribution of compressibility. We
give an expression allowing the evaluation of this coherent
background. It is often negligible but involves contrast terms
that may reveal important surprises.

Even if the corrections proposed here are somewhat
tedious, it seems reasonable to increase the accuracy of SANS
measurements by introducing them systematically in data
treatment procedures.
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Throughout this paper it is assumed that the different
contributions for background subtraction add to one another.
For example, the contribution from the empty container adds
to that from the sample, or incoherent scattering adds to
coherent scattering. Implicitly this is only valid for single
scattering. As soon as multiple scattering is not negligible,
these different contributions do not simply add but are
convoluted with each other component, making background
subtraction more complicated. To our knowledge, this is still
an unsolved problem. Generally, multiple scattering involves
highly scattered intensity that renders background subtraction
a secondary problem. In the case of negligible background, the
effects of multiple scattering can be removed from the data
(Schelten & Schmatz, 1980; Monkenbusch, 1991) so as to
obtain the coherent, single scattering cross section of the
sample.

Finally, prior to data analysis, a last stage for data treatment
is sometimes necessary. It consists of signal desmearing
(Glatter, 1977) that accounts for the resolution function. For
this stage, the q-dependent resolution of the spectrometer has
to be calculated (Pedersen et al., 1990; Lairez, 1999). The latter
calculation is also implemented in the new software for data
treatment at LLB (Lairez, 2006).

APPENDIX A
Scattering by a sample inside a container

The problem of scattering by a sample inside a container is
slightly complicated by a possible contribution of the
container (aluminium sheets, alloy windows etc.). This
problem can be solved if multiple scattering is negligible. Let
us consider a sample of thickness zs between two windows of
the same thickness, zec, and made with the same material (see
Fig. 8). The scattering intensity is the sum of three components
that depend on the location of interaction between the
neutron and the scatterer. Scattering functions are denoted
Fecð!Þ for the front and back windows of the container and
Fsð!Þ for the sample.

The scattered intensities can be written as

I1ð!Þ ¼
Rzec

0

dx exp½%&ecx'Fecð!Þ exp½%&sðzs % xÞ= cos !'

+ exp½%ð&szs þ &eczecÞ= cos !'; ð40Þ

I2ð!Þ ¼
Rzs

0

dx exp½%ð&eczec þ &sxÞ'Fsð!Þ

+ exp½%&sðzs % xÞ=cos !' expð%&eczec=cos !Þ; ð41Þ

I3ð!Þ ¼
Rzec

0

dx expð%&ecxÞFecð!Þ exp½%&ecðzec % xÞ=cos !'

+ exp½%ð&szs þ &eczecÞ': ð42Þ

The total intensity is the sum of I1ð!Þ, I2ð!Þ and I3ð!Þ. Let us
define the following quantities:

Ti ¼ expð%&iziÞ;

Tið!Þ ¼ Ti

1% Ta
i ð!Þ

að!Þ&i

;

að!Þ ¼ ð1=cos !Þ % 1

T !
i ¼ T 1=cos !

i :

Note that the transmission, TS, measured for the sample inside
its container is related to the transmissions of each layer of the
overall sample by

TS ¼ T2
ecTs ¼ TECTs ¼ exp½%ð2&eczec þ &szsÞ':

Uppercase subscript S refers to the sample inside the
container and uppercase subscript EC to the overall empty
container, whereas lowercase subscripts s and ec stand for the
sample alone and the two windows of the container.

During the experiment, the scattering signal ISð!Þ recorded
on the detector is

ISð!Þ ¼ Tsð!ÞTecT
!
ecFsð!Þ

þ Tecð!Þ T !
ecT

!
s þ TecTs

' (
Fecð!Þ

þ T !
ec

' (2
T !
s Fbð!Þ þ B:

That of the empty container is

IECð!Þ ¼ Tecð!Þ T !
ec þ Tec

' (
Fecð!Þ þ T !

ec

' (2
Fbð!Þ þ B:

In this formula, we can check that the scattering intensity of
the empty container is weighted by the usual factor:

Tecð!ÞðT !
ec þ TecÞ ¼ Tec

1% Tað!Þ
ec

að!Þ&ec

+
Tec

h
1þ Tað!Þ

ec

i,

¼ T2
ec

1% T2að!Þ
ec

að!Þ&ec

¼ TECð!Þ:

It is useful to write all coefficients as a function of experi-
mental parameters TS, TEC, zs and zec. The equations

research papers
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Figure 8
Schematic representation of the scattering by a sample of thickness zs in a
container with front and back windows of thicknesses zec1 and zec2,
respectively.
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Tsð!ÞTecT
!
ec ¼ zsTS

%
Tað!Þ=2
EC

1% ðTS=TECÞ
að!Þ

%að!Þ lnðTS=TECÞ

&

¼ zsTS 'Sð!Þ;
Tecð!ÞðT !

ecT
!
s þ TecTsÞ ¼ 2zecTS

+ 1% Tað!Þ=2
EC

%að!Þ lnðTECÞ

%
1þ

!
TS

T1=2
EC

"að!Þ &

¼ 2zecTS )Sð!Þ;

introduce 'Sð!Þ and )Sð!Þ. Finally, we obtain for the scattered
intensity of the sample

ISð!Þ ¼ zsTS'Sð!ÞFsð!Þ þ 2zecTS)Sð!ÞFecð!Þ þ T !
S Fbð!Þ þ B;

and for the empty container

IECð!Þ ¼ 2zecTEC)ECð!ÞFecð!Þ þ T !
ECFbð!Þ þ B:

As a result, the scattering function of the sample Fsð!Þ is

FSð!Þ ¼
ISð!Þ % B

zsTS'Sð!Þ
% )Sð!Þ
zs'Sð!Þ

IECð!Þ % B

)ECð!ÞTEC

% &

þ 1

zs'Sð!Þ

%
)Sð!ÞT !

EC

)ECð!ÞTEC

% T !
S

TS

&
Fbð!Þ

Finally, this reduces to equation (12).

APPENDIX B
Incoherent scattering of an H and D solvent mixture:
example of calculation

Let us consider a hydrogenated solvent of molar mass mslvH

and volumic mass ,H. It contains 1=vsolv ¼ Na,HmslvH mol-
ecules per volume unit, where Na is Avogadro’s number. The
coherent and incoherent scattering lengths are aslvH and aincslvH.
Its deuterated homolog is assumed to have the same partial
molar volume and to be characterized by aslvD and aincslvD. For a
mixture made of a fraction xslvD of D molecules and a fraction
ð1% xslvDÞ of H molecules, the incoherent scattering per solid
angle and volume unit is

~""inc
solv ¼ ð1=vsolvÞ

h
xslvDðaincslvDÞ

2 þ ð1% xslvDÞðaincslvHÞ
2

þ xslvDð1% xslvDÞðaslvD % aslvHÞ
2
i
: ð43Þ

The last term of equation (43) is the incoherent term of mixing
(Cotton, 1991a, 1999). It depends on the coherent scattering
lengths of molecules and comes from the absence of correla-
tion between the location of one molecule and its isotopic
composition.

As an example, we have calculated the fraction xslvD of
D-benzene to be used in a blank sample for c ¼ 0:1 g cm%3 of
D-polystyrene (PSD) dissolved in H-benzene. Numerical data
are given in Table 2. In this case, incoherent scattering
predominates and the difference in compressibility terms
between the solution and the solvent mixture can be
neglected. The number of PSD molecules per unit volume of
solution is x2=v2 ¼ Nac=mC8D8

¼ 5:38+ 1020 cm%3. The
corresponding volume fraction is x2 ¼ 8:74+ 10%2. Thus, the
number of solvent molecules per unit volume of solution is
x1=v1 ¼ 1=v1 % ðx2=v1Þ ¼ 6:17+ 1021 cm%3. The incoherent
scattering of the solution is ~""inc

s ¼ ðaincC6H6
Þ2x1=v1 þ

ðaincC8D8
Þ2x2=v2 ¼ 0:237 cm%1. The composition of the mixture

having this incoherent cross section is obtained by solving
equation (43). The positive solution of this equation is
xslvD ¼ 0:28. Note that this volume fraction of D-benzene is
high compared with the concentration of the D-polymer
(0.1 g cm%3) in solution. This clearly shows the importance of
composition fluctuations (Cotton, 1991b, 1999) in incoherent
scattering of the solvent mixture.

Equation (43) assumes that no isotopic exchange between
H and D molecules occurs. This is not the case in water, in
which H2O, D2O, HDO and DHO coexist in the mixture. In
this peculiar case, a correct calculation leads to

~""inc
water vwater ¼ xslvDðaincD2O

Þ2 þ ð1% xslvDÞðaincH2O
Þ2

þ xslvDð1% xslvDÞ
)
4ðaD % aHÞ

2

þ 2ðaD þ aH þ aOÞ
2*; ð44Þ

where aD, aH and aO are the coherent scattering lengths of H,
D and O nuclei. The ‘incoherent’ scattering signal is increased
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Table 2
Numerical value for simple scatterers.

v is the molecular volume; a is the coherent scattering length; ainc is the incoherent scattering length (Sears, 1992); +T is the isothermal compressibility at 298 K
(Lide, 1995–1996; Brandrup & Immergut, 1989); ~""inc is the incoherent scattering cross section per volume and solid angle unit. CS2 is an interesting and rare solvent
with a very low incoherent scattering cross section.

v%1 a ðaincÞ2 kT+T a2v%2kT+T ~""inc

Scatterer (1021 cm%3) (10%12 cm) (10%24 cm2) (10%24 cm3) (10%2 cm%1) (10%2 cm%1)

Water H2O 33.4 %0.167 12.8 1.88 0.00587 42.7
Heavy water D2O 33.4 1.92 0.327 1.88 0.772 1.09
H-cyclohexane C6H12 5.58 %0.500 76.6 4.69 0.00365 42.5
D-cyclohexane C6D12 5.58 12.0 1.96 4.69 2.10 1.09
H-benzene C6H6 6.77 1.74 38.3 3.98 0.0554 25.9
D-benzene C6D6 6.77 7.99 0.981 3.98 1.16 0.668
Carbon disulfide CS2 10.0 1.23 0.00120 3.79 0.0577 0.00120
H-polystyrene –(C8H8)n– 6.15 2.33 51.1 0.910 0.0186 31.4
D-polystyrene –(C8D8)n– 6.15 10.7 1.31 0.910 0.391 0.805
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since the mixture contains more than two species. Equation
(44) rectifies an oversight of Cotton (1991a) and corrects a
mistake of Cotton (1999).
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