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We study a model for the gel degradation by an enzyme, where the gel is schematized as a cubic
lattice, and the enzyme as a random walker, that cuts the bonds over which it passes. The model
undergoes a (reverse) percolation transition, which for low density of enzymes falls in a universality
class different from random percolation. In particular, we have measured a gel fraction critical exponent
B = 1.0 £ 0.1, in excellent agreement with experiments made on the real system.
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The extracellular matrix (ECM) is a gel composed by
various proteins, including collagen, elastin, fibronectin,
and laminin, connected to form an elastic network that
extends macroscopically. This gel is normally imperme-
able to cell passage, and ensures organ integrity by in-
sulating organs and preventing cell dissemination.
Moreover, it is the support of cell adhesion and regulates
cell proliferation, differentiation, and locomotion. During
specific processes, the ECM can be degraded by a variety
of proteolytic enzymes, especially metalloproteinases,
that catalyze the hydrolysis of the crosslinks between
peptide chains constituting the ECM, increasing its per-
meability to the passage of cells. This degradation process
can at some point solubilize the gel, realizing a reverse
“gel-sol” transition, and bringing the ECM to a liquid
state, in which cells are no longer confined and can freely
diffuse. This solubilizing transition is especially con-
nected with tumor invasiveness, in which some cells
access the lymphatic and blood circulation, and dissemi-
nate to distant organs (metastasis). In this view, beyond
the biochemical processes involved at molecular level, the
understanding of the physical mechanisms of the ECM
degradation is of great importance.

The passage from a liquid to a gel state is a critical
phenomenon [1,2], in which soluble monomers bind to
form larger and larger clusters. At some point, when the
bond density p becomes grater than some critical thresh-
old p., an “infinite” cluster extending macroscopically is
formed, and the network becomes a solid gel with an
elastic response. The reverse transition, in which bonds
are removed, and the system goes from a gel to a liquid
state, can be clearly described in the same framework.
The theory of critical phenomena predicts that, near the
transition, the macroscopic quantities describing the sys-
tem are related to the distance from the transition (p —
p.) by power laws. The average cluster diameter diverges
as |p — p.|77, while the weight average mass as |p —
p.l77. The viscosity diverges as |p — p.|~* below the
transition (p < p.), and stays infinite above it, while the
gel fraction (the density of the infinite cluster) and the
elastic modulus, that are zero below the transition, grow
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above it, respectively, as |p — p.|? and |p — p.|. It is
important to point out that exponents v, B, vy, etc. are
universal, that is they do not depend on the microscopic
details of the system, but only on characteristics like the
dimensionality of the system, or whether or not there is a
long range correlation in the distribution of the bonds.

Recently, a series of interesting experiments has been
realized to study the in vitro degradation of protein gels
by exogenous proteinases, under cell-free conditions
[3,4]. In particular, in [3] it was shown that a gel-sol
transition adequately describes the degradation of the
gel. Two kinds of gel, fibronectin and ECM gel, and three
kinds of enzyme, thermolysin, trypsin and proteinase K,
were used in various combinations. An enzyme solution
was added to a certain quantity of gel, and the solubilized
fraction X,(r) of peptides was measured as a function of
time. The gel-sol transition is reached at some time 7.,
when X, (#) becomes equal to one, or when the gel
fraction X, (1) = 1 — X,,(#) becomes zero. With various
gel-enzyme combinations, and different enzyme concen-
trations, it was found that X, o |1 — 7.|#, with 8 = 1, for
t <t.. For ECM gel and trypsin for example 8 = 1.01 *
0.03 [3]. As the critical exponents are extracted from the
behavior of the system near the transition, and being the
density of bonds a regular function of time around ¢., we
can make a Taylor expansion and take only the first order
term, obtaining (p — p.) « (¢ — ¢.) near the transition.
Therefore X, = |p — p.|P, with B =1, for p > p,.

This result is quite unexpected, because sol-gel tran-
sition is usually well described by random percolation,
which is obtained when each bond between two mono-
mers is present with probability p, and there is no corre-
lation between different bonds. Random percolation in
three dimensions gives a critical exponent 8 = 0.41,
very different from the one measured in the gel degrada-
tion experiments. In Ref. [3] different possible explana-
tions of this discrepancy were proposed.

A possibility, in order to explain the change in the
universality class with respect to random percolation, is
the presence of a long range correlation in the distribution
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of nonhydrolyzed bonds [4]. The correlation function is
defined as G(|r|]) = (p(r')p(x' + 1)) — {p(r'))*>, where
p(r) is the density of bonds, and the average (-) is done
over the reference position r’. It was shown by Weinrib
and Halperin [5] that if the correlation obeys a power law
G(r) = r™“ at long distances with a < d (where d is the
dimensionality of the system), then the percolation tran-
sition falls in a universality class different from the
random percolation, in particular, with a correlation
length exponent v = 2/a.

In this Letter, we study a very simple model, which we
call “pacman percolation model,” in which the protein
gel is schematized as a cubic lattice of N = L? sites,
where each site represent an (exavalent) monomer. At
time ¢ = 0 all the bonds between nearest neighbor mono-
mers are present. One or more enzymes are then intro-
duced in the system in random initial positions. At each
step, every enzyme moves from one site to a nearest
neighbor site, chosen randomly between the six possible
neighbors, and hydrolyzes (deletes) the corresponding
bond if not yet hydrolyzed. Periodic boundary conditions
are chosen. The site version of this model was studied, in
a different context, in Ref. [6]. In Fig. 1(a) it is shown the
two-dimensional version of the model, with only one
enzyme in the system, after the enzyme has walked
around for some time (roughly at the percolation thresh-
old). Note how the remaining nonhydrolyzed bonds are
spatially correlated, with respect to a random percolation
model [Fig. 1(b)]. At each time step, there will be a
distribution of clusters, where two sites belong to the
same cluster if there is a path of nonhydrolyzed bond
between them. We measure then, as a function of the
density p of bonds: a boolean variable equal to one if
there is a percolating cluster, to zero otherwise; the size of
the percolating cluster, if any; the mean cluster size, that
is &3 nys?, where n; is the number of clusters of size s,
and the percolating cluster is excluded from the sum.

We perform the simulation many times, with different
starting points and realization of the paths of the en-
zymes, and average over all the runs the above mentioned
quantities. In this way we expect that all the quantities
will be translationally invariant [7]. We obtain the perco-
lating probability I1(p, L), the percolating cluster density
p(p, L), and the mean cluster size y(p, L) as a function of
the bond density and of the size L of the lattice. From
these quantities, it is possible to evaluate the percolation
density p. and the critical exponents v, 8 and 7y [1].
Plotting the percolating probability I1(p, L) as a function
of p for different lattice sizes L, it is possible to measure
the percolation threshold density p, as the point in which
the different curves intersect, for L — oco. Plotting then
II(p, L) as a function of (p — p.)L'/”, one can measure
the correlation length exponent v as the value that gives
the best collapse of the curves. The error on the exponent
can be defined by looking for the largest interval of v,
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FIG. 1. (a) Pacman percolation model on a square lattice of
size 642, with a single enzyme and after 12 000 steps, when the
density of nonhydrolyzed bonds is p = 0.42. (b) The random
percolation model with the same bond density.

b)

such that the curves collapse within the error bars. In the
same way, plotting p(p, L)LA/ and y(p, L)L™?/" as a
function of (p — p.)L'/”, one can measure the exponents
B and .

We have first studied the “single enzyme” version of
the model on the cubic lattice. In Figs. 2(a) and 2(b) we
show II(p, L) and p(p, L) for lattices of size 30°, 403, 503,
and 603, together with the data collapses (insets). We find
p. =0.139 £0.001, » = 1.8 0.1, 8 = 1.0 = 0.1. Note
that the exponent 8 is in excellent agreement with the
experimental results of Ref. [3]. We have also computed
x(p, L) (not shown) and extracted the exponent 7, finding
v = 3.5 = 0.2. The exponents v, 3, and 7y satisfy well the
hyperscaling relation 28 + v = vd, expected on general
grounds [1]. In Table I the critical exponents found are
compared with those of random percolation. These results
show that the single enzyme version of the pacman per-
colation model falls in another universality class with
respect to random percolation, which we call “pacman
percolation universality class.”

We have also verified the relation predicted by Weinrib
and Halperin [5] between the exponent v and the power
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FIG. 2. (a) Percolation probability II(p, L) and (b) density
p(p, L) of the percolating cluster as a function of the bond
density p, with a single enzyme and for cubic lattices of size
L =30, 40, 50, 60. Insets: data collapses obtained plotting
I(p, L) and p(p, L)LE'* (p — p.)L'/”, with v = 1.8 and B =
1.0.

law governing the decay of correlations, in the single
enzyme model. In Fig. 3 the correlation G(|i — j|) =
(n;n;) — (n;)n;) in the occupation of the bonds i and j,
where |i — j| is the distance between the centers of the
bonds, is shown for a system of size 1003 at the percola-
tion threshold p = 0.139. The correlations obeys a power
law G(r) ~ r~¢ with a = 1.15 % 0.05, with an exponen-

TABLE L.  Percolation density and critical indices in the pac-
man percolation model, and in random percolation, in three
dimensions.

Pacman percolation Experiment Random percolation
De 0.139 = 0.001 0.2488
v 1.8 = 0.1 0.88
B 1.0£0.1 1.0 = 0.1 0.41
v 34+02 1.80
" 3.5*+0.1 2.0
s 1.1 £0.1 0.73

tial cutoff, presumably due to finite size effects, at dis-
tances larger than r = 30. The relation » = 2/a predicted
by Weinrib and Halperin, is quite well verified within the
errors. It has been recently argued [4] that for such a
model the correlations between bonds should decay as
1/r, implying a = 1 and v = 2. The prediction, however,
is valid only if some conditions are verified, such as long
times and large distances. The discrepancy between this
prediction and our results may be due to the fact that these
asymptotic regimes are not reached in our simulations.

We have then studied the model with a uniform density
pg of enzymes. A number p;L3 enzymes are distributed
in random positions on the lattice, and at each step every
enzyme makes one move. Critical exponents are extracted
in the usual way. We found that, as long as the concentra-
tion is pp = 0.4, the effective critical exponents mea-
sured are the same of the single enzyme model, that is
those of the pacman percolation universality class. For
pr = 0.8 instead we measure exponents in agreement
with random percolation. This is expected because, for
very high density of enzymes, each bond is cut by a
different enzyme, so that there are no correlations be-
tween bonds.

From a renormalization point of view, one may expect
that the pacman percolation universality class should be
relevant only for a density of enzymes vanishing in the
thermodynamic limit, such as for the single enzyme
model, while for any finite density of enzymes the model
should fall in the random percolation universality class.
On the other hand, from our results, it comes out that a
slow crossover exists, such that for finite but low density
of enzymes effective critical exponents are measured in
the pacman percolation universality class.

FIG. 3. Spatial correlation G(r) in the occupation of the
bonds, with a single enzyme on a cubic lattice of size L =
100, near the percolation threshold p = 0.14.
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FIG. 4. Conductivity 3(p, L) of (a) the random-resistor net-
work and (b) the conductor-superconductor network as a func-
tion of the bond density p, with a single enzyme and for the
same lattice sizes of Fig. 2. Insets: data collapses obtained
plotting 3(p, L)L*/* versus (p — p,)L'”, with v = 1.8, u =
3.5,and s = 1.1.

This may be true also for the experimental observa-
tions. To compare the results of the model with experi-
ments, one has to express the density of enzymes in the
same manner. This can be done expressing the experi-
mental density as (d/dg)?, where dp; is the mean distance
between enzymes, and dp is the mean distance between
the crosslinks of the network. The latter can be evaluated
by dy = (kgT/G)'/3, where G is the elastic modulus of the
gel (before enzyme degradation), and T the temperature.
In the experiments of Ref. [3], G =40 Pa and T = 300K,
so that dg =~ 40 nm, while dg is between 70 and 400 nm.
The experimental concentration corresponds therefore to
an enzyme density between 0.001 and 0.2, in the density
region where the effective critical exponents measured in
the simulations are those of the pacman percolation uni-
versality class. This confirms the agreement of the value
of the exponent 8 measured in the simulations and in the
experiments.

To complete our study, we have analyzed the critical
exponent u and s of the conductivity in the random-
resistor and conductor-superconductor networks, that
should be in correspondence, respectively, with the ex-
ponents ¢ of the elastic modulus, and k of the viscosity
[8,9]. In the first case, each present bond of the model is
substituted with a resistor of unitary conductance, while
absent bonds have zero conductance. The total conductiv-
ity 2 of the model is then measured as a function of bond
density, and it is zero for p < p,, while it grows as |p —
p.|# for p > p.. Using finite size scaling as usual [see
Fig. 4(a)] we find w = 3.5 = 0.1. In the second case each
present bond of the model is substituted with a supercon-
ductor of infinite conductance, while absent bonds are
substituted with resistors of unitary conductance. In this
case the total conductivity 2, diverges as |p — p.|* for
p < p., and stays infinite for p > p,. In this case we find
s = 1.1 = 0.1 [see Fig. 4(b)].

In conclusion, we have used a percolation model to
study the degradation process of ECM due to the action
of enzymes. Our results show that, for low density of
enzymes, our model belongs to a different universality
class from random percolation. The change in the critical
indices may be due to long range correlation. If the
density of enzymes is sufficiently high, the correlation
between bonds disappears and there is a crossover to
random percolation.

This work was partially supported by EU Network
No. MRTN-CT-2003-504712, @ MIUR-PRIN-2002,
MIUR-FIRB-2002, CRAC-AMRA, and INFM-Parallel
Computer Initiative.

[1] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor & Francis, London, 1992).

[2] P.G. de Gennes, Scaling Concepts in Polimer Physics
(Cornell University Press, Ithaca, 1993).

[3] H. Berry, J. Pelta, D. Lairez, and V. Larreta-Garde,
Biochim. Biophys. Acta 1524, 110 (2000).

[4] G.C. Fadda, D. Lairez, B. Arrio, J.P. Carton, and V.
Larreta-Garde, Biophys. J. 85, 2808 (2003).

[5] A. Weinrib and B.1 Halperin, Phys. Rev. B 27, 413
(1983); A. Weinrib, Phys. Rev. B 29, 387 (1984).

[6] J.R. Banavar, M. Muthukumar, and J. F Willemsen, J.
Phys. A 18, 61 (1985).

[7] If one does not average over the starting points of the
enzymes, all the observables may still be translationally
invariant in 3D, but not in 2D. Indeed, the system forgets
the starting point of the enzyme when the number of
steps, which has to be of order L4, is much greater than
L.

[8] P.G. de Gennes, J. Phys. (Paris), Lett. 37, L-1 (1976).

[9] P.G. de Gennes, C. R. Acad. Sci. Paris B 286, 131 (1978).

228301-4



