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ABSTRACT: Triblock copolymers polystyrene-polyisoprene-polystyrene were studied in dilute solution in 
a selective solvent, i.e., a nonsolvent for polystyrene and a good solvent for polyisoprene. At a concentration 
equal to 1.6 X 10-3 g/cm3 triblock aggregates appear. Elastic and quasi-elastic light scattering experiments, 
as well as intrinsic viscosity measurements, performed on these solutions show a loose structure rather than 
a micellar structure for the aggregates. These experimental results are also discussed from a theoretical point 
of view. 

1. Introduction 
Polymer aggregation processes leading to multifarious 

and complex structures are an extensive research domain 
attracting a great deal of scientists. Starting from polymer 
properties which are now well-known in many aspects, a 
physicist can try one's hand at understanding the behavior 
of these aggregates. Varying the driving force of the 
aggregation, the number of possibilities seems to be 
unlimited as for a building set. A quick look at the 
literature concerning surfactant, zwitterion polymers, and 
block copolymers is enough to be convinced. 

A tremendous effort is devoted to block copolymers in 
solution. One studies, for example, diblocks which are 
made of a succession of N A  monomers A followed by NB 
monomers B, with A and B having different chemical 
nature and thus being incompatible. Depending on NA, 
NB, and the solvent quality for each block, several 
structures and long-range organizations are predicted 
theoretically and observed experimentally. For example, 
diblock copolymers A-B WithNB > N A  diluted in a selective 
solvent, Le., a good solvent for one block (B) and a 
nonsolvent for the other (A), are known to form micelles 
made of acore containing A blocks and a corona containing 
B blocks which adopt a starlike blob structure. In the 
case of selective solvent, an unsolved problem is the 
influence of the polymer topology on the aggregate 
conformation. For example, one may wonder whether 
diblock A-B and triblock A-B-B-A have the same 
behavior or not. In this paper, we report an experimental 
study of triblock aggregates obtained in a nonsolvent of 
the terminal blocks. While "flower"-like micelles are 
usually reported on the literature, our results obtained on 
one particular sample lead to another picture of the 
aggregate structure. These experimental results will also 
be discussed from a theoretical point of view. 

2. Sample Characteristics and Experimental 
Conditions 

The triblock copolymer polystyrene-polyisoprene-polystyrene 
studied in this paper ww kindly provided by DEXCO. Its 
polydispersity indexwas given to be less than 1.02, and the weight 
ratios of each block are 15.3%, 69.4%, and 15.3%, respectively. 
This polymer sample was first characterized in dilute solution 
in a good solvent of the three blocks (tetrahydrofuran), by 
viscosimetry and static and dynamic light scattering experiments. 

0 Abstract published in Advance ACS Abstracts, April 15, 1994. 

0024-9297/94/2227-2956$04.50/0 

The total weight-average molecular weight (A&), the radius of 
gyration (Rg), the diffusion coefficient (D), and the intrinsic 
viscosity ( [ q ] )  were determined. Results are summarized in Table 
1. 

This paper is concerned with the aggregation process of this 
triblock copolymer in dilute solution in a selective solvent. Here, 
n-heptane was chosen, which is a nonsolvent for polystyrene 
terminal blocks and a good solvent for polyisoprene in the 
temperature range we worked with (above 40 "C). 

Experimental resulb reported in this paper were obtained 
mainly by light scattering experiments. The polarized light source 
was either a Ar+ (wavelength & = 488 nm) or a He-Ne laser (A0 

= 633 nm), allowing an observation length scale comprised of 
between 27 and 270 nm. Dynamic light scattering experiments 
were performed using the self-beat technique, the time-averaged 
autocorrelation function of the scattered intensity being obtained 
using a Malvern 7032 multicorrelator. The small-angle neutron 
scattering experiment was performed on the PACE spectrometer 
in Saclay, and the observation length scale was comprised of 
between 2 and 34 nm. Viscosity measurements were performed 
using an Ubbelohde capillary viscosimeter. 

3. Experimental Procedures and Results 

3.1. Static Light Scattering. For a dilute polymer 
solution, calling I ,  and I ,  the measured scattered intensity 
by polymer solution and by solvent alone, respectively, 
the relevant quantity is the excess Rayleigh ratio due to 
light scattered by polymers in the solvent: I = ( I ,  - I,)/Ip 
Classically, I ( q )  has the following form: 

with C the polymer concentration, M ,  the polymer weight- 
average molecular mass, R,  the solvent Rayleigh ratio, K 
= 4.R2r22(dn/dC)2/(NAX04), NA Avogadro's number, and n 
the refractive index of the solution. The refractive index 
increment (an/aC) of the triblock copolymer was calculated 
following ref 1 and using for homopolymer solutions the 
followingvalues: (dn/dC)p~ = 0.138 and (dn/dC)ps = 0.215. 
The scattering vector q = (47rn/b) sin(W2) corresponds to 
the inverse of the observation length scale. In dilute 
solution the structure factor S(q) and the form factor P(q) 
reflect space correlation between monomers belonging to 
different polymers and belonging to the same polymer, 
respectively. In the limit q - 0, the structure factor S(q) 
reflects the macroscopic properties of the solution and is 
proportional to the osmotic compressibility (da/dC)-', 
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Table 1. Sample Characteristics Determined in a Good 
Solvent Solution (Tetrahydrofuran) 

M, (g/mol) 
R, (nm) 2 8 * 2  
D (cm2/s) 
RH (nm) 10.0 f 0.1 
[SI ( c m W  95 f 2 

(1.65 0.08) X los 

(45.5 0.5) X 10-8 

which is expressed by a virial expansion. One has 
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for M,A& < 1, where A2 is the second virial coefficient. 
If the length scale q-l is sufficiently large compared to 

the radius of gyration R, of the polymers, the form factor 
P(q)  obeys Guinier's law: 

(3) 

where Rfpp, the apparent radius of gyration, is linked to 
R, by a virial expansion. Using eqs 1-3, the expression of 
the scattered intensity I ( q )  at  qR, < 1 may be rewritten 
as: 

I ( q )  = (K/R,)CMapp(l - q2RaP,2/3) 

Mapp = M,(1 - 2 M 3 , C )  

(4) 

with 

The apparent mass Mapp of polymers in solution at  a 
concentration C is given by extrapolation of the scattered 
intensity per monomer I(q)/C to q = 0, while the apparent 
radius of gyration Rap, is obtained by a mean-square linear 
fit of the inverse of the scattered intensity vs q2. 

When the length scale q-l is smaller than the apparent 
radius Rapp, the scattered intensity depends strongly on 
the length scale. The scattered intensity per monomer 
I(q)/C is only due to local space correlation between 
monomers in a volume q-3 and is proportional to the 
number of monomers in this volume. This q-dependence 
gives us a direct access to the fractal dimension df of 
polymers. In this q range, the form factor can be expressed 
as: 

P(q)  = ( Q R , , , ) ~ ~  (5) 

Using eqs 1 and 4, I ( q )  at  qRapp > 1 can be rewritten as: 

with 

Mapp N Rappdr 

Figures 1 and 2 show the concentration dependence of 
Mapp and Rapp determined by light scattering experiments. 
Above a given concentration equal to (1.6 f 0.2) X 
g/cm3, these quantities increase strongly with the con- 
centration. This behavior is interpreted as a signature of 
the aggregation process for triblock copolymers. This is 
why, in the following, we will denote this concentration 
value the critical aggregation concentration c.a.c. by 
analogy with micellization processes which occur at 
concentration higher than the c.rn.c. 

In the concentration range below the c.a.c., linear 
dependencies of Mapp and Rap, with concentration are due 
to interactions between polymers in solution and could be 
expressed by a virial expansion as mentioned above. 
Nevertheless, the variation of scattered intensity within 
this concentration range is too small to allow an accurate 

0 
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Figure 1. Concentration dependence at 50 O C  of the apparent 
mass Mapp = Io/(K/R,)C, where IO is the scattered intensity at q 
= 0. The apparent mass increases continuously above a given 
concentration denoted c.a.c.. Closed symbols correspond to the 
concentrations studied by quasi-elastic light scattering. 
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Figure 2. Concentration dependence at 50 "C of the apparent 
radius Rapp. Above the c.Q.c., the radius increases strongly until 
a concentration on the order of 6 X 103 g/cm3, the value above 
which it remains constant. Closed symbols correspond to the 
concentrations studied by quasi-elastic light scattering. 

determination of the second virial coefficient. Figures 1 
and 2 only indicate a repulsive potential between polymers 
(A2 > 0). Extrapolations of Mapp and Rapp to C = 0 lead 
to: 

M ,  = 1.68 X lo5 g/mol R, = 25 f 2 nm (7) 

which is close to the values obtained for triblock copolymers 
in good solvent (see Table 1). Thus, the overlap concen- 
tration C* = Mw/(N~R,3) of triblock copolymers can be 
estimated, and one finds 

C* = 1.7 X g/cm3 (8) 

In the concentration range above the c.a.c., Raqp and 
Mapp increase strongly with the concentration until C z 
6 X g/cm3, the value above which Rapp ramins constant 
while Mapp increases more slowly. In this concentration 
range two different behaviors of the scattered intensity 
I (q )  are observed: 

(1) At QRapp < 1, I ( q )  was fitted using eq 4 which allows 
us to determine Mapp and Rapp Their variations vs the 
total concentration are given in Figures 1 and 2. In this 
q-range, for the highest concentration, the measured mass 
(and radius of gyration) is larger by a factor 4 (81, than the 
expected value for isolated triblock copolymers. This 
indicates the presence of large triblock aggregates. 

(2) At qRapp > 1, light scattering data can be fitted by 
Guinier's law (eq 4) with mass and radius on the order of 
those measured at  concentrations below the c.a.c. This 
points out the presence of free isolated triblock copolymers 
still present in the solution. 
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In Figure 3, the inverse of the scattered intensity as a 
function of the square transfer vector measured for one 
sample is reported; it shows the method used to fit the low 
and high q parts of the spectrum. These two behaviors 
of the scattered intensity spectra indicate clearly the 
presence of two scattering species in the solutions: 
aggregates and free copolymers which will be called 
unimers2 in what follows. One has to note that, in such 
a case, it is not easy to separate the contribution of each 
scattering species. One can write 
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The apparent radius measured a t  qR,, < 1, is a z-averaged 
quantity which follows the general expression: 

assuming monodisperse aggregates, where C, M, and R 
are concentration, mass, and radius of unimers and 
aggregates, respectively, depending on the subscript. It 
means that the apparent radius of gyration of aggregates 
is larger than the measured radius. More quantitative 
information concerning the aggregation process requires 
complementary data which were obtained using a quasi- 
elastic light scattering technique and are reported in the 
next section. We will see how these experiments allow us 
to deduce CqgMW,/CUn~MUni; in all the cases the value of 
this ratio leads to an underestimation of the radius of the 
aggregates by less than 10%. 

g/cm3) diluted in 
deuterated n-heptane, a small-angle neutron scattering 
experiment was performed. For this sample, in order to 
see the scattered intensity spectrum in a wide q-range, 
light and neutron scattering data are plotted on the same 
figure (Figure 4) using arbitrary units (neutron scattering 
data being scaled by a numerical factor). This result will 
be discussed later on. 
3.2. Quasi-Elastic Light Scattering. A quasi-elastic 

light scattering device allows the time-dependent fluctua- 
tions of the refractive index of a medium to be analyzed 
by computing the time-averaged autocorrelation function 
of the scattered intensity signal I(q,t) .  In the Gaussian 
approximation3 the relaxation function g(q,t) of these 
fluctuations can be written as: 

On one sample (C = 4.7 X 

Experimentally, fluctuations of the refractive index due 
to concentration fluctuations (dn/dC) are larger than those 
due to temperature fluctuations (dnldT). Therefore,g(q,t) 
reflects the translatory motion of the set of scattering units 
which scatter coherently. It may be, for example, the 
diffusive motion of polymers in dilute solution when they 
are observed at  length scales q-l larger than their radius 
of gyration. In this case, the relaxation function g(q , t )  is 
the simple exponential decay having a characteristic time 
7, which is the time for the polymers to cover a distance 
q-l. D being the diffusion coefficient of the polymers, a t  
qR, < 1, one has 

D = 1/7,q2 (12) 

In this q-range, the diffusion coefficient so measured is a 
constant independent of q, linked to the hydrodynamic 
radius RH of polymers through Stokes’ law: 

D = kT/6*qsRH (13) 
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Figure 3. Guinier plot of the light scattered intensity measured 
on one sample having a concentration C = 4.5 X 10-9 g/cm3. The 
inverse of the scattered intensity, I ,  as a function of the square 
of the transfer vector q shows two linear behaviors in the low and 
high q-range, respectively. Straight lines correspond to mean- 
square linear fits of each park the full line corresponds to R,, 
= 94.6 nm; the dashed line corresponds to Rap, = 21 nm. 
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Figure 4. Light and neutron scattered intensity in arbitrary 
units (neutron data were multiplied by a given factor for 
juxtaposition) versus the transfer vector q,  measured on one 
sample at C = 4.7 x 10-9 g/cm3. 

where k is Boltzmann’s constant, T the temperature, and 
q, the solvent viscosity. At smaller length scales (qR, > 
1) measurements are sensitive to concentration fluctua- 
tions inside the polymer. In this case, the characteristic 
time depends strongly on hydrodynamical interactions 
between monomers of the same molecule. In the Zimm 
limit, valid, for example, in the case of linear polymers in 
dilute solutions, the measured characteristic time T 

corresponds to the diffusive motion of parts of the molecule 
having a hydrodynamic radius equal to q-l. This leads to 
q3 scaling of the time 7 which characterizes internal modes 
of loose structure like linear or branched polymers in dilute 
s o l u t i ~ n . ~ ? ~  In some other cases, for example, star polymers 
which behave like hard spheres: small parts of molecules 
cannot diffuse irrespective of the others and the diffusion 
coefficient of the overall molecule is observed whatever 
the length scale q-1.7 

In the present study, g(t,q) was measured below and 
above the c.a.c. and analyzed considering the static light 
scattering results reported in the previous section. 

In the conbentration range below the c.u.c., the relaxation 
function g(t,q) is found to be a simple exponential decay 
in the entire q-range. The diffusion coefficient Ds = 
1/(7,qz) is found to be independent of the scattering vector 
q and of the concentration C and is found to be equal to: 

(14) Ds = (7.3 f 0.3) X cm2/s 

leading to the hydrodynamic radius: 

R ,  = 10.8 f 0.5 nm 
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Figure 5. Log-log plot of the quasi-elastic light scattering 
relaxation function obtained on one sample at a given angle (C 
= 1.07 X 10-2 g/cm3, qR.,, = 3) .  The full line a corresponds to 
the best fit obtained by summation of one simple exponential 
and of one stretched exponentid g( t )  = 0.40 exp(-t/40 X 1 W )  + 0.60 exp(-t/0.89 X 10-9)2/9. The full line b results from a 
maximum entropy fit for the relaxation function. 

This result is consistent with the diffusive motion of 
isolated triblock copolymers which are only present in the 
solution in this concentration range (see Table 1). The 
radius R, of triblock measured by static light scattering 
(eq 7) is sufficiently small that qRapp is always smaller 
than 1. As for the independence of the diffusion coefficient 
on the concentration, it implies weak interactions between 
polymers. 

In the concentration range above the c.a.c., static light 
scattering results suggest two well-defined characteristic 
times for the relaxation function g(t,q), corresponding to 
unimers and aggregates. In order to confirm this expecta- 
tion, g( t,q) was first analyzed using the maximum entropy 
methode which gives access to the relaxation time distri- 
bution function G(7) defined byg(t) = JG(7) e+d7. Figure 
5 shows an example of the relaxation function measured 
on one sample at  C = 1.07 X g/cm3 and qRapp = 3. 
Spectral analysis using the maximum entropy method 
indicates clearly the presence of two well-separated 
relaxation modes. The peak in the time distribution 
function corresponding to the fast mode is quite symmetric 
as expected for a simple exponential relaxation, while the 
slow mode shows a dissymmetry, as would be the case for 
a stretched exponential relaxation mode. Indeed, this 
relaxation function was obtained at  length scale q-l 
intermediate between the radius of unimers and the one 
of aggregates. Therefore, one expects for the relaxation 
function (a) a short time corresponding to the diffusive 
mode of unimers and (b) a long time corresponding either 
to the internal motion or to the diffusion of the aggregates, 
depending on the hydrodynamic interactions taking place 
between monomers inside the aggregates. 

One can show that, in the case of linear polymers, the 
q-3 dependence of the characteristic times corresponding 
to internal modes comes with a stretched exponential 
relaxation function having an exponent 0 = 2/3.5v8 In order 
to analyze the quasi-elastic light scattering data within 
this context, the relaxation function g(t,q) was fitted by 
the method of cumulants applied to its short- and long- 
time parts. Subscripts S and L refer to short and long 
times, respectively. The following general form was used: 

(16) g(t,q) = As(q) e-t/Ts + AL(q) 

with As(q)  + A L ( ~ )  = 1 and 0 = 1 or 2/3 according to the 
best fit. This procedure allows a rapid determination of 
the parameters As, AL, TS, and 7~ which have a direct 
physical meaning and is sufficiently accurate to describe 
the overall relaxation function as is shown on Figure 5. 
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Figure 6. Hydrodynamic radius of unimers vs the total 
concentration, deduced from the short-time mode of the quasi- 
elastic light scattering relaxation function: RH = ~ q 2 k T / 6 ~ 1 ) , ,  
where 7s is the short characteristic time, q the transfer vector, 
and I ) ~  the solvent viscosity. The so-measured radius is found to 
be in agreement with the one measured in good solvent solution 
(RH in THF, see Table 1) whatever the temperature (40,50, and 
60 "C) and the concentration. Closed symbols correspond to 
measurements performed at 50 O C .  
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Figure 7. Reduced apparent diffusion coefficient DID,+ vs qR. 
For triblock aggregates R = Rap, and D = DL = 1/rLq2, where 7~ 
is the long characteristic time of the quasi-elastic light scattering 
relaxation function. (a) Comparison of triblock aggregates and 
diblock micelle behaviors.23 (b) Comparison of l inear?  branched,22 
and star polymer behaviors.' At qR > 1 ,  triblock aggregates and 
linear and branched polymers show internal modes, while diblock 
micelles as well as star polymers show diffusive motion whatever 
qR. 

Experimentally one obtains a diffusion coefficient Ds 
= 1/7sQ2 independent of the scattering vector and of the 
concentration, which is equal to the diffusion coefficient 
measured below the C.U.C.  This confirms the previous 
interpretation which assigned the short time to the 
diffusive motion of unimers. Figure 6 shows, a t  different 
temperatures, the independence of the hydrodynamic 
radius RH = kTl6a~Jls  on the concentration. 

Depending on the q-range, as shown in Figure 7a, one 
observes two behaviors for the diffusion coefficient DL = 
1/ rLq2 assigned to the presence of aggregates: 

(1) For qRapp < 1 the slow relaxation mode is a simple 
exponential (p  = 1 )  and corresponds to a diffusive motion: 
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Figure 8. Concentration dependence of the diffusion coefficient 
of triblock aggregates. 

the diffusion coefficient DL in this q-range is independent 
of q. Figure 8 shows that [ D L ] , ~  decreases with the 
concentration. 

(2) ForqR,,> 1, thebestfitisobtainedusingastretched 
exponential (0 = 2/3) for the slowest relaxation mode. The 
measured diffusion coefficient DL scales as q and reveals 
internal modes (TL  - CI-~). DL can be written as: 

with 

Further information is contained in the q-dependence 
of the amplitude ratio ALIAS. The amplitudes of the two 
modes observed in the relaxation function reflect the 
contribution of each species to the total scattered intensity; 
one has the following equalities: 

where IO, Pagg(q), and Pmi(q) are the total scattered 
intensity at q = 0 and the form factors of aggregates and 
unimers, respectively. In the whole experimental q-range, 
the length scale is sufficiently large compared to RUi to 
consider the contribution of unimers to the total scattered 
intensity as a q-independent constant: P,i(q) = 1. This 
leads to: 

Consequently, it is possible to deduce the form factor Pwg- 
(9) of aggregates following two procedures: first from the 
variation of the ratio ALIAS vs q (eq 20a) and second from 
the analysis of the static light scattering spectra using eq 
20b. Static and dynamic light scattering data are in good 
agreement (see Figure 9). Whatever the method, the 
temperature, and the concentration, a single curve for Pa- 
(9) is found which shows a weak q-dependence for qRapp 
< 1 and a power law at  qRapp > 1. One can write 

I 

I qussJ-elastic L.S. data 

1 , I # , , #  

1 10 

qRapp 

Figure 9. Form factor of aggregates, P , ,  aa a function of the 
reduced quantity q&, obtained by static and quasi-ektic ht 
scattering measurements. Quasi-elastic data obtained on ?! if- 
ferent aamplea at different concentrations above the c.0.c. are 
superimpoaed, while static measurement correaponda to a sample 
at C = 7.72 X 1W g/cms. The straight line is a guide for the eyes 
having a slope -2. 

The fractal dimension is found to be df = 2.0 0.2. Figure 
10 shows the increase of [AdA&+ with the total 
concentration C, in agreement with the previous results 
reported in Figure 1. This concentration dependence and 
the total scattered intensity 10 coming from static mea- 
surements can provide more information about the ag- 
gregation process. This will be discussed later on. 

3.3. Viscosimetry. For a polymer solution, the quan- 
tity of interest is the specific viscosity, qsP, corresponding 
to the relative increase of the viscosity due to the presence 
of polymers: 

where q and qs are the solution and solvent viscosity, 
respectively, and k~ is the Huggins constant. The quantity 
[ql is called the intrinsic viscosity and has the dimension 
of the inverse of a concentration. In solution, hydrody- 
namic interactions are important; i.e., the polymer behavior 
corresponds to the Zimm limit. Furthermore, in zero shear 
flow, no deformation of the polymer occurs during the 
experiment. These two remarks allow us to apply the 
Einstein relation which links the viscosity q to that of a 
solution of hard spheres occupying a volume fraction @:q 
= qB(l  + 5/2@). From eq 22 it may be seen that [q] N @/C 
which is the inverse of the overlap concentration C* of 
polymers, Le., their internal concentration (@ - nR3 and 
C - nM leading to @IC - R3/M = l/C*): 

[VI - 1/c* (23) 
Viscosity measurements were performed using a Ub- 

belohde capillary viscosimeter described elsewhere.10 We 
found a similar concentration dependence of the reduced 
viscosity above and below the c.a.c. comparable to the one 
measured in good solvent solutions. By extrapolation to 
zero concentration, we have an intrinsic viscosity of triblock 
copolymers in n-heptane equal to [ql = 67.0 f 0.5 cm3/g. 
Figure 11 shows the reduced specific viscosity (vsP - [qI)/ 
[712 = kHC vs the concentration C for triblockln-heptane 
solutions and triblock/tetrahydrofuran solutions. No 
significant modification of the apparent Huggins coef- 
ficient is found, indicating clearly that unimers and 
aggregates have the same internal concentration C*. 

4. Discussion 
4.1. Experimental Results Interpretation. The 

aggregation of block copolymers in a selective solvent is with 
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Figure 10. Concentration dependence of the q = 0 limit of 
amplitude ratio (AdA&+ of the two quasi-elastic relaxation 
modes. 
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Figure 11. (qgP - [q1)/[qI2 = f i ~ C  (where qsP is the specific 
viscosity and [q] in intrinsic viscosity) as a function of the 
concentration in good solvent (tetrahydrofuran) and selective 
solvent (n-heptane). The concentration behavior is identical 
below and above the C.U.C. and comparable to the one observed 
in good solvent solution. This indicates that unimers and 
aggregates have the same overlap concentration C*. 

very often described as a micellization process leading to 
spherical starlike aggregates. For diblock copolymers, this 
description is encountered in both theoreti~a1ll-l~ and 
experirnental2J4~15 literature. In this picture, the driving 
force of the aggregation is the interfacial tension between 
the solvent and the polymer block which is in anonsolvent 
situation. It leads to a very small critical micellar 
concentration (c.m.c.) and to a spherical conformation of 
the aggregates. It is often assumed that, from a theoretical 
point of view, there is no difference between diblock and 
triblock micellization. Triblock copolymers diluted in a 
nonsolvent of the terminal blocks are expected to form 
flower-like micelles, the loss of entropy which corresponds 
to the backfolding of the middle block being negligible 
compared to the enthalpic term.16J7 These expectations 
are claimed to be verified in most of the cases,17-19 There 
are obvious discrepancies between this common point of 
view and the results reported here. The first of them is 
the unusual high value of the critical concentration C.U.C .  
= (1.6 f 0.2) X g/cm3 which is larger than the value 
reported for diblock micellization.2 Such a concentration 
value implies that there is a large amount of free unimers 
still present in the solution above the c.a.c. Due to them, 
the analysis of static scattering spectra is not easy. 
Nevertheless, the scattered intensity (see Figure 4) shows 
neither a q-3 sharp decrease at  qR, = 1, which is 
characteristic of star-shaped polymers, nor a q4 Porod's 
behavior expected for structures having a sharp boundary 
as micelles with a high association number.20121 This result 
is confirmed by the form factor of triblock aggregates 
deduced from the analysis of both static and quasi-elastic 
light scattering data (see Figure 9). Moreover, examination 
of the dynamical behavior of the aggregates shows clearly 
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Figure 12. Variation of unimer and aggregate concentrations 
(in g/cm3) versus the total concentration. 
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Figure 13. Variation of the aggregation number p as a function 
of the total concentration. 

internal modes (DL N q) characteristic of loose structures 
as linear or branched polymers in the dilute regime, while 
compact or starlike micelles would lead to a diffusive mode 
whatever qR,. Parts a and b of Figure 7 allow us to compare 
the q-dependence of the diffusion coefficient obtained for 
triblock aggregates, linear  homopolymer^,^ and branched 
homopolymers22 with the diffusive mode observed for 
stars7 and diblock micelles whatever qR,.23 

From the concentration dependence of the total scat- 
tered intensity and of the amplitudes AL and As of the 
two relaxation modes determined by quasi-elastic light 
scattering, one can obtain more details about the growth 
of aggregates. Neglecting interactions between unimers 
and/or aggregates and taking for the mass of unimers the 
apparent one measured at  the c.a.c., one gets the con- 
centrations of unimvers and aggregates and the association 
number p as a function of the total concentration: 

Cuni = 'orAs3q-o Mmi and C, = C - Cmi (24) 

Results are plotted on Figures 12 and 13. A continuous 
increase of Cmi, C,, and p with the total concentration 
is found. Once again this result is in opposition to the 
classical micellization picture within which the degree of 
association p and the concentration of unimers are 
expected to be independent of the concentration (the 
concentration of unimers is expected to be equal to the 
c.m.c.1. Such a nonconstant unimer concentration would 
imply a polydisperse population of aggregates. 

It is tempting to compare the concentration dependence 
of the association number p to that of the apparent radius 
(Figures 13 and 2). It is readily seen that both quantities 
increase by a factor of 8, which seems to be inconsistent 
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with a fractal dimension, df, of order 2 (Figure 9). This 
result constitutes an additional argument in favor of the 
polydispersity of aggregates. The apparent radius and 
mass actually correspond to quantities averaged in dif- 
ferent ways: the apparent mass is a weight-averaged 
quantity (ratio of the second moment to the first moment 
of the distribution), while the radius is a z-averaged 
quantity (ratio of the third to the second moment). 
Obviously, the latter is more sensitive to large aggregates 
than the former and thus would be overestimated in the 
case of a polydisperse population. However, the existence 
of a critical aggregation concentration and the presence 
of two well-defined modes in the quasi-elastic light 
scattering data suggest that there is a gap in the size 
distribution between the unimer and the smallest aggregate 
size. This topic will be discussed in the following section 
in relation with the possible structures for the aggregates. 

Let us return to the viscosity measurements reported 
in section 3.3. These results indicate that the internal 
concentration C* remains unaffected by the aggregation 
process. Once more this would not be the case for triblock 
star micelles, for which the overlap concentration is 
expected to scale as C:* - pz/5C:nimers.21 

Thus viscosity and elastic and quasi-elastic light scat- 
tering results argue in favor of a loose aggregate structure 
remaining unimer conformation unaffected. 

4.2. Theoretical Point of View. Our experimental 
results are understandable in terms of the theoretical work 
of ten Brinke and Hadz i i~annou~~  which outlines the 
difference between diblock and triblock aggregation. The 
authors do not expect triblocks to form micelles because 
of the loss of entropy due to the backfolding of the middle 
block. Indeed, branch-like triblock aggregates so-pre- 
dicted were actually observed in recent computer simula- 
t i o n ~ . ~ ~  In this section simple theoretical considerations 
will show that, among the various possible structures one 
may imagine for the aggregate structure, flower-like 
micelles are unfavorable. 

4.2.1. Unimers and Critical Aggregation Concen- 
tration. The simplest approach to critical aggregation 
assumes an equilibrium between free unimers and large 
aggregates. Equality between chemical potentials a t  the 
critical aggregation concentration 4c.a.c. leads to: 
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where E,, and El are the free energy per chain for the 
aggregates and unimers, respectively. Expecting E ,  << 
El, due to the large size of the aggregates: 

Thus the critical aggregation concentration depends 
essentially on the unimer state, whatever type of aggrega- 
tion occurs. 

Free triblock copolymers ABA diluted in a nonsolvent 
of the terminal block can adopt two main different con- 
formations: self-associated (ring shaped) or not (dumbbell 
shaped) (see Figure 14).25 The interfacial energy between 
A blocks and the solvent is smaller in the former case than 
in the latter, but an entropy penalty is paid due to the 
backfolding of the middle B-block. This entropy loss is 
written in a phenomenological form following ten Brinke 
and Hadzi i~annou:~~ 

(28) 

where & is the number of statistical segments of the 

dumbbell ring 

‘t\$J’ 

Figure 14. Dumbbell- and ring-shaped conformations of triblock 
copolymers in a selective solvent (nonsolvent of the terminal 
block). 

middle block, i.e., monomers for an ideally flexible polymer. 
The origin of the coefficient /3 is worth discussing. In the 
case of end-to-end looping, one has /3 = 1 and /3 = 1.3 for 
Gaussian and excluded-volume chains, respectively. These 
values stems from the return probability PN(a) (see, for 
instance, ref 4, p 39). Calling r the end-to-end distance, 
its distribution law has the general form: 

(29) 

R = aN’ being the radius of the polymer and a the size of 
the statistical segment. One has f(a/R) - (a/R)(y-1)/u.26 
For triblock copolymers, more complicated effects can alter 
the value of B when the degree of polymerization NA of the 
terminal blocks is increased.25 One effect is due to the 
excluded volume due to the A core, which tends to repel 
the chain: it would increase the value of @ as the self- 
excluded volume does. On the contrary, when the radius 
of the core is not negligible compared to R, one has to take 
into account all possible locations of the second end point 
on the core surface. The extreme case corresponds to an 
infinite radius of the core; integrating eq 29 over a plane, 
one finds /3 = 0.4, not far from the value reported in ref 
25 and probably the lower bound for /3. 

The triblock unimer conformation will result in a 
competition between the loss of entropy due to the 
backfolding of the middle block and the attraction between 
the terminal block due to interfacial energy. When 

3/3 In RB > (2 - 22/3)yaz(3(4a)’/2N*)2/3 
2 (30) 

i.e., when RB is larger than one limit value FB, dumbbell- 
shaped conformation has a lower energy. In this expres- 
sion, y is an effective surface tension (in IzTunit) between 
the core and the solvent and depends on both NA and 
NB. The limit value FB is naturally expressed using the 
solubility concentration, $8, at  the same temperature of a 
A homopolymer having the same degree of polymerization 
NA as the block copolymer. Approximately: 

leading to: 

(31) 

Let us return to the experiments reported in this paper. 
The triblock copolymer used has N A  = Nps = 200 and NB 
= NPI = 1500. The solubility concentration in n-heptane 
of a 4 X lo4 g/mol polystyrene (Nps = 400) was measured 
by light scattering to be equal to 4 X 10“ g/g. This yields 
& zz 1.7 X 10-3 g/g for Nps = 200; using /3 = 0.4 (the most 
favorable value for ring-shaped conformation) one obtains 
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VB 100 (33) 

The condition & > rB is generally fulfilled, and most of 
the free unimers are expected to adopt a dumbbell 
conformation. This is experimentally confirmed by the 
radius of gyration of unimers in selective solvent (n- 
heptane) which is found comparable to the one measured 
in good solvent (THF), while ring-shaped polymers are 
expected to have a radius & smaller than linear poly- 
m e r ~ . ~ ~  The energy E1 of this reference state corresponds 
to twice the interfacial energy of one A block; it is found 
in our case (NA = 200) that 

stripped flower 

E, = 13 kT (34) 

In this case, if large and strongly aggregated objects were 
to appear a t  so that eq 27 would hold, one should 
have = 42 3 X 1O-e g/g (while for diblock copolymers 
corresponding to half of a triblock, one should have 
= &). This is much too small compared with our 
experimental value &a.c, z 2.5 X le3 g/g. Since E,, is not 
very small compared to El, it can be concluded that the 
aggregates are small or loose, or both. The experimental 
results reported here show that they are small and loose. 

4.2.2. On the Existence of Flower Micelles. The 
analog of starlike micelles are flower micelles in the case 
of triblock copolymers. Their existence is still contro- 
versial from the theoretical and experimental point of view. 
Reference 24 concluded that they are forbidden for 
copolymer-homopolymer blends due to the backfolding 
energy. In the case of a selective solvent this penalty could 
be hidden by the effect of the osmotic pressure. This is 
investigated in the present section. 

A spherical flower micelle made ofp triblocks molecules 
(NA, N B )  is similar to a star micelle made of 2p diblocks 
(NA, N B / ~ )  from the point of view of the blob scaling picture 
of the corona. As a consequence, the osmotic pressure 
term of the free energy is the same in both cases. Once 
again, there is a loss of entropy due to the backfolding of 
the middle B block. The polymer chains are stretched 
and thus the halves of the B block are close to each other. 
Using the Alexander-de Gennes approximation (all chains 
go the the edge of the corona2s), the constraint is that the 
ends of the halves in neighboring blobs of the outer layer 
must meet. So, the loop penalty per chain can be shown 
to be (3/2)& In g([R), where the subscript ev stands for 
excluded volume and g([R) is the number of monomers 
belonging to the largest blob. This is a straightforward 
application of eq 29 with N = g(sk) and r = {R, so that the 
appropriate value for the coefficient 0 is Pev = 6/5. 
Neglecting prefactors, the free energy per chain is 

(35) 

The last term does not really change the optimum 
aggregation numberp* from that of a starlike micelle made 
of diblock copolymers but yields a shift in the chemical 
potential pflower = (l/p*)Fflow&*)/kT. Using numbers 
from solubility concentration measurements: ya2- 
( 3 ( 4 ~ ) ' / ~ ) ~ / ~  z 0.2, one obtainsp* z 4 and pflower = 14. This 
value is due to a large looping shift on the order of 10. This 
result explains why flower micelles are not observed in 
our system since punimer = 13. 

More generally, we now propose a kind of minimum 
stability criterion for a flower micelle by comparing it to 
the "stripped" flower obtained by pulling one A block out 
of the corona (Figure 15). The energy of this object is 

Figure 15. Flower-shaped conformation of triblock aggregates 
is unstable because of the loss of entropy due to the backfolding 
of the middle block. A stripped flower conformation, obtained 
by pulling one terminal block out of the corona, is more favorable. 

1)PeVln - + E,/2kT (36) (2) 
where E112 corresponds to the energy of a free diblock 
(NA, NB/~).  Setting p = p*, one obtains 

As a result, if 

2/38 

4c.m.c. 
(38) 

the flower conformation is certainly unstable, where 4c.m.c.  
is the critical micellar concentration for flowers to appear. 

For the PS-PI-PS copolymer we have dealt with, we 
can estimate the free energy gain on extruding one block 
to be about 6 kT and several arms must be pulled out for 
a substantial energy gain. Obviously micelles made of 
triblocks having free terminal blocks tend to associate and 
yield extended structures (see section 4.2.4). 

4.2.3. Other Compact Aggregates: Tubes,Platelets, 
etc. The study of spherical micelles has shown that the 
loop entropy is related to the size CR of the outer blobs. 
Because of the radial structure (R is rather large. It is 
worth comparing with, e.g., cylindrical or lamellar (plate- 
lets ... ) aggregates for which [R is smaller. The loop energy 
per chain is found to bez9 

cylinder 

lamella 

(39) 

where X and I: are the cylinder length and the lamella area 
per chain, respectively. Numerically we get pcYl 13, 
slightly less than pflower, while plam is much higher. 
Although improbable in our case, the possible existence 
of cylinders (in particular for the longer B block) should 
be kept in mind. 

4.2.4. Loose Aggregates. The above considerations 
show how entropic effects due to the middle block 
backfolding prevent the existence of classical micelles. 
Thus we expect aggregates with several A cores, very few 
loops and thus rather loose and extended conformation. 
This is confirmed experimentally. A more precise de- 
scription of these objects is difficult. Branched or treelike 
structures can be considered. The experimental situation 
is probably complicated by the polydispersity of aggregates 
(small p ) ,  as it is confirmed by the unimer concentration 
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measurements show that the internal concentrations of 
unimers and aggregates are identical; (4) the unimer 
concentration and the aggregation number depend on the 
copolymer concentration. To our knowledge, this is in 
contradiction to most of the experimental results reported 
in the literature. Simple theoretical considerations have 
shown that this result is understandable, taking into 
account the entropic term corresponding to the backfolding 
of the middle block. This term depends strongly on the 
size of the two terminal blocks and on the interfacial 
tension between these blocks and the solvent. These are 
the relevant parameters that have to be controlled in order 
to observe a transition from loose to micellar structures. 
Nevertheless, this work outlines the major difference 
between diblock and triblock behaviors. Further experi- 
ments have to be performed in this direction. 

Light and neutron scattering experiments and rheo- 
logical measurements were performed in semidilute solu- 
tion on the same triblock/solvent system. These results 
will be reported in a following paper. 

loose branched structure 
0 

,, 

/ 

Figure 16. Possible loose structure for triblock aggregates. 

which increases with the total concentration above the 
C . U . C .  (see section 4.1 and Figure 12). 

Assuming an infinite branched structure with mean 
functionality f ,  the observed value of gives the 
estimate f z 6 from: 

2f”3yu2(3(4?r)1/2NA)2/3 = E ,  + In r$c n.c (41) 

if excluded-volume effects are neglected. These latter 
effects should yield to clusters of finite size. In view of the 
high values of the apparent radius of the aggregates, Rapp, 
reported here, it is tempting to propose a linear structure 
cf = 2). But, this would correspond to an energy per chain 
plin 10 (taking into account surface tension only), and 
a critical concentration r 5 X g/g. Moreover, 
excluded-volume effects strongly limit the length of such 
a chain. 

The measured value of R,, is much too large to be that 
of a typical aggregate. As discussed in section 4.1, Rapp 
corresponds to the radius of the largest objects and the 
fact that it does not scale as plldf was ascribed to the 
polydispersity. However, the existence of a rather sharp 
C . U . C .  suggests that there is some optimal aggregation 
number different from unity giving a sizable decrease of 
the chain chemical potential. The largest aggregates could 
be the result of stripped flowers “holding hands” in chain 
(Figure 16). Within such a picture each isolated stripped 
flower looks like a star having such a small number of 
polyisoprene arms that the latter would have no more than 
one or two blobs. As a matter of fact, the radius of the 
polystyrene cores can be estimated to be on the order of 
40 8, (assuming Gaussian conformation of the chain and 
from ref 30); this leads to a smallest blob having a size r 
P 60 A, while a homopolyisoprene having the same mass 
as the middle block of our sample is expected to have a 
radius equal to 150 A.31 The first consequence of these 
estimates is that this structure is compatible with the 
observation of internal modes. The second consequence 
is that the overlap concentration of the aggregates, Le., 
their internal concentration, would be the one of unimers: 
1.7 X 10-2 g/cm3, in agreement with viscosity measure- 
ments. 

5. Conclusion 
In this paper we have reported static and dynamic light 

scattering experiments performed on triblock copolymers 
in dilute solution in a selective advent. The results do 
not correspond to those expected for a micellar structure 
of the aggregates but rather are consistent with a loose 
branched structure: (1) the form factor of the aggregates 
shows a smooth decrease a t  qR > 1; (2) quasi-elastic light 
scattering data indicate internal modes; (3) viscosity 
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